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Abstract—This work focuses on the design, analysis and eval-
uation of Dynamic Weighted Round Robin (DWRR) algorithms
that can guarantee CPU service shares in clusters of servers.
Our motivation comes from the need to provision multiple
server CPUs in cloud-based data center environments. Using
stochastic control theory we show that a class of DWRR policies
provide the service differentiation objectives, without requiring
any knowledge about the arrival and the service process statistics.
The member policies provide the data center administrator with
trade-off options, so that the communication and computation
overhead of the policy can be adjusted. We further evaluate
the proposed policies via simulations, using both synthetic and
real traces obtained from a medium scale mobile computing
application.

Index Terms—CPU scheduling, service differentiation, stochas-
tic control, closed loop systems, servers

I. INTRODUCTION

Along with the advertised advantages, like scalability, cost
efficiency and rapid deployment, cloud technologies bring
strong challenges to the designers of the cloud environments.
In this work, we focus on one such design challenge, namely
service differentiation, that refers to the problem of provision-
ing resources among competing users. The new challenge that
the cloud environment brings to the table is to define and
enforce meaningful, easy-to-apply Service Level Agreements
(SLAs).

In the emerging virtualized computing environment the
state-of-the-art performance SLAs are based on CPU utiliza-
tion, having the objective to guarantee CPU utilization goals
per user/server. The most known objective of such an SLA
is the case where VMs compete for the physical CPU power
and guaranteed service to each VM is required [1][2][3][4].
Apart from meeting exact guarantees, what is encountered in
practice is a performance margin between a minimum and
maximum CPU utilization percentage, due to the stochastic
nature of the overall server load, multi-tenancy effects, work
conserving or non work conserving modes of operation, how
the algorithms handle symmetric multiprocessing and so on
[2][4]. Although CPU provisioning is a very well investi-
gated topic (e.g., in OS operations and thread schedulers
[5], hypervisor operations [1][2][3][4], queueing systems [6])
the importance of dynamic control schemes that are able to
guarantee CPU performance/provisioning has emerged again
because of the increased complexities in today’s virtualized
cloud-based environments. The reason is that, in contrast to
metrics like delay, CPU utilization is a metric that is easily
observable, even in virtualized environments and CPU power

is the dominant resource that determines the server/system
performance. Therefore we believe our study is critical to such
systems and applications.

In this work, we examine the CPU allocation problem of
providing guaranteed service per customer class. We define a
class of Dynamic Weighted Round Robin (DWRR) scheduling
algorithms that under some statistical assumptions can be used
to provision not approximate but exact CPU cycle percentages
between competing users in overload. Under this class of
policies the SLA is achieved at all times, even when the
demand exceeds the capabilities of the system, while at the
same time they fulfill a number of design criteria. An example
SLA is the following, “without any knowledge of statistics
regarding the arrival and the service process in a cluster of
servers, guarantee 20% of CPU power to requests of class
A, 30% of CPU power to requests of class B and 50% of
CPU power to requests of class C in the long run. Also
assume that no statistical knowledge is available regarding
the correlation between the request size and the service time”.
The system model we examine is generic and thus it can be
applied, with some necessary modifications, in both thread
scheduling in a OS kernel [5] or a hypervisor, as well as in
web server operations. We present a motivating scenario from
a professional web application environment in Section II.

This type of SLAs may seem trivial to satisfy. In prin-
ciple, however, when we cannot use knowledge about the
arrival/service process, static algorithms are not suitable. First
note that our study focuses on overloaded environments. In the
case of underloaded systems (with total utilization less than
1), in a work conserving system the utilization every class will
receive is equal to λi ·E[Si], where E[Si] is the mean service
time of class i and λi its arrival rate, independently of the
goal vector. Then let, for simplicity, m = 1 be the number
of servers in an overloaded system and D the set of classes.
It is well known that under a Weighted Round Robin (WRR)
policy employing weights wi, the utilization UWRR

i of a given
class will converge to the constant UWRR

i = wi·E[Si]∑
j∈D

wj ·E[Sj ]
.

Then, to achieve the goal under WRR (or similar policies)
one needs to set the weights wi such as UWRR

i equals the
goal utilization and solve a system of linear equations to find
the weights. Weighted Round Robin [7] and approximations
of the proportional-share GPS/WFQ [8] in which weights
are assigned statically, in the case where the statistics of
job service time are unknown, are not able to provide the
required differentiation and the same conclusion holds true for



probabilistic/mixing policies [6][9] that need to characterize
the performance space first. Static open-loop schemes can only
reach arbitrary defined targets in the case when the arrival
and service process are known in advance; as we will show
in the motivating example this is not the case in professional
service-oriented web applications. Also, an approach based on
service time predictions according to system macro behavior
rather than the micro behavior is subject to prediction errors
[10] and usually is unable to provide predictable services.

The policies used to provide this kind of differentiation
must, therefore, be dynamic in nature; they require a closed-
loop, feedback-based system to make their decisions. Never-
theless, dynamic policies incur communication and compu-
tational overhead and are not guaranteed a priori to achieve
their objective. For example, they may exhibit oscillations and
thus may never reach a steady state, while it is possible that
after long time any action taken may have mild effects on the
system behavior [11] [12]. This property translates to slow
speeds of convergence.

In summary, our modeling assumptions and analysis tech-
niques are as follows. We assume general arrival and general
service time processes with unknown statistics. Our controls
are feedback-based, dynamic variations of Weighted Round
Robin policies. The reason for this choice is the superior
convergence properties of such controls as compared to prob-
abilistic ones [13]. We note that we cannot use state-space
models analysis since the parameters of the feedback-based
system are stochastic [14]. In our approach, we examine
convergence properties of our controls by applying tools from
stochastic analysis. In our model there is no need for (fair
queueing) virtual time calculations [8][15], and similar to [12],
we focus on work-conserving, non-preemptive controls that
do not depend on future arrivals and service times. Related
analysis tools (namely Lyapunov analysis in systems where
negative drift is applied to change priorities) were used in
works like [11], [12] and [16].

Our contributions are the following. We first prove ana-
lytically that a rich class of proposed controls can achieve
the desired objective of the SLA (Theorem 1 and Corollary
1) and we show that the speed of convergence to the desired
goals is sub-linear (Theorem 2). In order to avoid mathematical
technicalities in the proofs, we assume heavy traffic (e.g.,
overloaded situations). We then evaluate the controls under
more realistic assumptions, in terms of their convergence
speed, the required overhead and their insensitivity to sys-
tem and statistical assumptions. The evaluation is done via
simulations; we use both synthetic and real traces obtained
from a medium scale mobile application. The policies are
designed with the data center administrators in mind: they are
configurable, providing them with trade-off options, so that the
communication and computation overhead of the policy can
be adjusted to specific environments. We show how the weight
selection in such schemes affects the magnitude of oscillations
but not convergence to the goal.

The paper is organized as follows: in Section II, we describe
a motivating scenario for the objective we consider; in Section

Fig. 1: Multitier datacenter architecture. In front of the servers
that execute the main application processing, ESBs are de-
ployed to perform specialized preprocessing functions.

III, we describe the system model, the detailed provisioning
objectives and the corresponding mathematical model; in Sec-
tion IV, we define a class of scheduling policies that meets
the objectives and outline policies of this class; in Section V,
we discuss implementation considerations, namely speed of
convergence and overhead-performance trade-offs; in Section
VI, we evaluate the performance of the proposed policies; we
summarize previous related work in Section VII and conclude
our study in Section VIII.

II. A MOTIVATING EXAMPLE

We provide the motivation for this study using a real
scenario, where a global mobile marketing services company
(referred to as MobileBroker) is acting as a service broker
between different mobile carriers.

A. The Service Broker application scenario

The MobileBroker houses its applications in a multi-tier data
center and one such application is the launching of a promotion
campaign, where subscribers from three large mobile carriers
contribute to bursts of requests. The MobileBroker has ap-
plications developed according to service oriented principles
and upon receiving a request (e.g., a single SMS message)
integration procedures, XML transformations take place and
a workflow is executed. A number of services like exami-
nation of the profile of the requester and/or the device are
called and based on business criteria a response or multiple
responses are sent back to the end user through the carrier.
The MobileBroker IT department has also adopted virtual-
ization and cloud computing technologies. Virtual servers in
our example are “tiered”. In the first tier virtual servers are
hosting Enterprise Service Bus (ESB)s [17] and are deployed
to perform specialized preprocessing functions (e.g., firewall
services, or protocol bridging and integration functions), while
in the second tier virtual servers execute the main application
processing. Fig. 1 provides a high-level description of the
system architecture that we consider in this paper. In practice,
the actual system that must be built to support these procedures
in large scale campaigns, with millions of subscribers (e.g.,
during concurrent Olympic game events), is quite complex.

All the customers from all the carriers request for a service
that will enable them to participate in the campaign. In Fig.
2(a) input traffic patterns (i.e., the number of SMS messages)
from all carriers are depicted for a single day, from real
statistics from the MobileBroker’s campaign application. In
Fig. 2(b) the arrival pattern is analyzed per mobile carrier for
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Fig. 2: Incoming traffic from three carriers are depicted in a real mobile promotion campaign.

the same day and in Fig. 2(c) the aggregated input statistics
are presented for the whole month1.

B. The user traffic, the SLA and the design challenge

The main motivation behind this work and the selected
SLA is that, in complex environments, like a professional
ESB environment in our example, it is not easy to correlate
actual processing time with the type of request or with
the request/packet size. Statistics about the inter-arrival and
service time for a customer’s requests are, in general, unknown
in practice and may not be easily estimated or correlated to
metrics that are easily observable in this service processing
environment. For example, parsing a small XML file may
need more CPU cycles than a huge XML file, depending on
the service requested and the iterations needed [17][18]. With
empirical data about the service time, when estimating the mo-
ments from the sample we can derive a good estimate for the
mean but the estimates for variance and higher moments are
not accurate [19]. With the feedback-based stochastic control
approach we develop in this work, we avoid dependencies on
prediction errors regarding the service process evolution.

C. The proposed SLA

The MobileBroker can agree with the clients to offer a
different service quality level depending on the system load.
The main idea is that under load stress, the system cannot
effectively guarantee the same level of performance as the
normal load metrics describe. An example of such a normal
load metric that can be quantified under normal load is delay.
Although it is quite challenging to offer guaranteed end-to-
end delay performance to each customer class, in practice
delay is not a metric that an administrator can guarantee, espe-
cially when talking about overloaded systems, where queueing
theory cannot provide safe bounds. In principle, in such a
highly dynamic environment, fine-tuned metrics like delay,
response time or availability are subject to uncontrollable
parameters like overall (physical and virtual) server load,
memory management, OS thread scheduling, multi-tenancy
effects, output and input traffic in queueing services or general
network issues.

An SLA with alternative metrics of performance must be
clearly chosen. In this work, we study an objective where

1All figures depict actual data received by the MobileBroker service.

guarantees on CPU sharing are provided to the users. An
example could be cast along the following lines: during
overload conditions, carrier A gets 50% of the total CPU
power in the server tier, carriers B and C get 25% each.
We formalize this problem in the following, using an abstract
system model.

III. SYSTEM MODEL & PROBLEM STATEMENT

A. System model

The system we consider is depicted in Fig. 3 and consists
of one controller, located “in front of” the CPU servers, a
set M = {1, . . . ,M} of servers and a set D = {1, . . . , D}
of service domains (i.e., customer classes). The controller
maintains a FIFO queue for each service domain. Every
server works on one request at a time. Upon completing the
request, the server sends a feedback signal to the controller,
which chooses a domain and then forwards the head-of-line
request from the domain’s queue to the server. For modeling
simplicity, we assume that all feedback signals and all requests
are transmitted instantaneously. Also preemption at the servers
is not allowed and control decisions are taken only at time
instances where a server completes a request.

Every domain i has a continuous time, GI arrival process
with finite rate λi. The service time of a request of domain i
is described by a random variable Si with general distribution,
mean E[Si] and finite variance. Moreover, in order to avoid
unnecessary technicalities in the proofs, we assume that there
exists finite Smaxi such that

0 < Si ≤ Smaxi <∞, a.s.

We further assume that the service times of any two re-
quests are pairwise independent. In practical systems these
assumptions describe well the service time in professional ESB
operations where subsequent requests from the same domain
may execute a different workflow or refer to different service,
inside the ESB server.

B. Problem statement

A scheduling policy (or simply policy) π is a rule that
determines the control actions across time. As explained
above, an action takes place at any instance that a request
is completely served, and the action consists of choosing a
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domain whose head-of-line request is forwarded to the server
which just finished service.

Definition 1 (Utilization of domain i): We define Uπi (t), the
utilization of domain i up to time t, under policy π as:

Uπi (t) ,
total received service by i up to t in the cluster

M · t
(1)

where M servers operate in the system. We then define the
performance metric of the allotted CPU to each domain i.

Definition 2 (Average CPU allotted to domain i): The
allotted percent of CPU capacity to domain i is

Ũi(π)
.
= lim inf

t→∞
Uπi (t), a.s. (2)

Technical SLA (T-SLA): Let pi, i = 1, . . . , D, be given strictly
positive constants that sum up to 1, where pi represents the
percent of CPU resource that the administrator wishes to
allocate to domain i over a large time period. Let p̃i = λi·E[Si]

M ;
p̃i denotes the maximum achievable utilization for domain
i, obtained when all of its requests were served, where an
infeasible goal represents a resource demand that exceeds the
system capability.

The T-SLA is formally expressed by the following condition:

Ũi(π) ≥ min{p̃i, pi} (3)

From a modeling perspective, a highly overloaded system
can be abstracted as an “ideally saturated” system in which
there is always traffic to be served in all the queues by all the
domains. Then the offered load always exceeds the desired
allocation pi, and eq. (3) becomes

Ũi(π) ≥ pi.

We provide details on the ideally saturated assumption in
the following section.

C. Desired policy properties

A “desirable” scheduling policy has several properties: a)
it achieves the T-SLA, meaning that it guarantees specific
CPU utilization percentages, b) it is agnostic to the arrival
and service statistics, c) it converges to the T-SLA fast, and,
d) requires a small amount of calculations per time unit.
Apart from (a) which is obvious, the knowledge of service
statistics (b) and the decision load (d) are both related to
the communication overhead and CPU costs and are very
important considerations for practical controller systems. Also
(c) is crucial for achieving the target within short periods. To
the best of our knowledge, no single scheduling policy exists
that is superior in all these properties; we investigate policies
that excel in some of the above criteria and give the designer
the ability to trade off in order to satisfy the rest.

IV. CLASS Π OF DYNAMIC POLICIES ACHIEVING THE SLA

We propose a specific class of policies which work using the
concept of a round. Instead of making one decision upon each
service completion, we bundle together a number of decisions
and fix them in a vector. Then as the servers become empty, the
next unused decision in the vector is chosen. This approach has

Fig. 3: System model. One controller is hosted in a router and
is located “in front of” the CPU servers. It maintains a FIFO
queue for each service domain, where every server works on
one request at a time in non-preemptive fashion.

the obvious disadvantage that some decisions are made earlier
than normal, and thus with less information about system state.
Nevertheless, round-based policies are very popular in high-
speed schedulers because the round provides the CPU of the
scheduler with enough time to make the scheduling decisions.
This way the scheduling overhead does not stall the system
operation.

A. Assumptions and Terminology

We define tn ∈ R+, to be the time instant when round n
begins, n ∈ N+. At each round n, wni requests of domain i are
serviced, where wni ’s are selected by the scheduling policy. Let
~W (tn) = [wni ] be a control vector responsible for the weight
allocation decisions taken at any instant tn, in the beginning
of round n; let Xi(tn) denote the queue size for domain i at
time instant tn. Let k(tn, π) be a positive integer chosen by
policy π in effect, and further constrained by k(tn, π) ≤ K
where K is an arbitrary, finite constant. (The bound constraint
is crucial in the proofs.)

Definition 3 (Class of policies definition): We define Π
as the class of policies π whose rules satisfy the following:

(i) wni = 0, if Ui(tn) > pi or Xi(tn) = 0

(ii) wni = min{k(tn, π), Xi(tn)}, if Ui(tn) ≤ pi, Xi(tn) > 0

In the special case where for all the domains j with Uj(tn) ≤
pj we have Xj(tn) = 0, then the policy selects at random
a domain i with wni = min{k(tn, π), Xi(tn)}. Note that the
class Π contains a large number of scheduling policies, since
k(tn, π) can depend on the round and since the definition
above allows serving the domains in an arbitrary order.
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Fig. 4: Service time example.

We denote Sni as the total service time domain i received
during round n (sum of individual service times). This ran-
dom variable is independent of how we reached time tn
and depends on the policy in effect, while it follows some
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probability distribution, that depends on (but not the same as)
the distribution of the request service time.

Let us denote by Si(j) the service time of the jth request of
domain i receiving service within round n; Si(j) is identically
distributed with Si. By definition, up to K requests can be
served per domain per round so for the sum of the service
time random variables the following inequality holds :

0 < Sni ≤ K · Smaxi <∞, a.s. (4)

Let Ln denote the service period during round n; then
Ln =

∑
i:wni ≥1

Sni let also ln denote the idle time that may

occur between round n and round n + 1. We assume only
systems where ln < l < ∞, a.s., (where l ∈ R+ notes the
maximum observable idle time or maximum observable inter-
arrival time) and the round length is bounded. An example of
the round time evolution is shown in Fig. 4.

An overloaded server system, ideally saturated, is clearly
related with the way we define busy periods. In queueing
theory, a busy period is the time between the arrival of a
customer to an idle server and the first time the server is idle
again. In the ideally saturated case we consider, we assume
an infinite busy period where we extend this concept and
furthermore we assume at any control instant tn, Xi(tn) >
0,∀i ∈ D (there is an available request by every domain
waiting for service), without however taking into account any
load variations, burst sizes or arrival process and service time
distribution details. This modeling assumption is basic for the
proof of convergence analysis of Theorem 1.

Definition 4 (Ideally saturated conditions): We say that
a domain is saturated if there always exists at least one
job waiting to be serviced. The system has ideally saturated
conditions if all domains are saturated.

Note also that, in ideally saturated conditions the control
vector update rules are simplified to:

wni =

{
k(tn, π) , if Ui(tn) ≤ pi
0 , if Ui(tn) > pi,

(5)

B. The main result: Convergence to the goal vector

From eq. (1), we can easily see that, for a period of time
∆ ∈ R+,∆ <∞ during which domain i is in service for time
T ∈ R+, T ≤ ∆ the utilization function evolves according to:

Ui(t+ ∆) =
t

t+ ∆
· Ui(t) +

T

t+ ∆
(6)

The policy π samples a point Ui(tn) from Ui(t) at the
beginning of round n; for every domain i the sequence of
sampled points evolves according to:

Ui(tn+1) =
tn
tn+1

· Ui(tn) + 1{wni ≥1} ·
Sni
tn+1

(7)

where the coefficient tn
tn+1

is the same for all the domains

and the term (1{wni ≥1} ·
Sni
tn+1

) depends on the control policy.
Although eq. (7) reminds one of low pass filter operations,
the ability to avoid oscillations and furthermore converge to

Algorithm 1 OBG Algorithm Description

tn : beginning of round n
Xi(tn) : queue size at tn for domain i
Calculate Ui(tn)
if Xi(tn) > 0 and Ui(tn) ≤ pi then

wni = 1
else

wni = 0
end if
if for all i:Ui(tn) < pi, Xi(tn) = 0 then

wnm = 1, for random m where Xm(tn) > 0
end if

the goal almost surely is due largely to the designed policy
operations. The following theorem states that all the policies
that belong in class Π converge to the goal and hence satisfy
the T-SLA.

Theorem 1 (Convergence to the objective): Under ideally
saturated conditions any policy in class Π satisfies the T-SLA
defined in eq. (3); moreover the following holds,

Ũi(π) = pi, a.s., ∀π ∈ Π. (8)

See the Appendix for the proof of this theorem.
1) Example policies: Two example policies that belong to

the class of policies defined are described below. We study
their properties extensively, in subsequent sections.

Serve All Suffering (Overloaded Below Goal - OOBG)
Under the OOBG policy, in round n (that starts at time tn),
set wni = 1 for all the domains where UOOBG

i (tn) ≤ pi; for
the rest set zero weights. In other words, at every round only
the domains that have allotted CPU time less than or equal to
their T-SLA target are given one service chance, regardless of
any other consideration (for example, regardless of how far a
domain is from its target); the rest are given none. Requests are
served in a “limit service” fashion according to [20] (transmit
all wni and move to the next “valid” queue). We note that the
same results hold whichever the order of service is.

To make OOBG work with non-saturated arrivals, ~W (tn) is
chosen in the case that no domain is below goal according
to the general rules defined. The corresponding algorithm
is now called OBG and selects all the “suffering” domains
for a round and serves one request per domain. The formal
description is outlined in Algorithm 1. In Section VI, we show
by simulations that OBG can be used to meet the T-SLA.

Serve The Most Suffering (Overloaded Only the Most
Suffering - OOMS) Under the OOMS policy, each round is
composed of only one domain which is served once. The
selected domain is the one with the largest amount of missing
service. When more than one domains have the same deviation
from the goal, the policy selects one of them at random.
More precisely, at a decision instant tn when the n round
begins, we set wni = 0, i 6= j and wj(tn) = 1 where
j = arg mink∈D{UOOMS

k (tn) − pk}. OOMS resembles the
family of maximum weight policies [21],[22]; that are well-
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known optimal policies and can be thought of as a degenerate
case of the Round Robin scheduling policies.

V. IMPLEMENTATION CONSIDERATIONS

In typical data center implementations, the controller can be
housed in any device that terminates TCP/UDP connections
(e.g., a core router, an http router/sprayer in the switch fabric,
or a preprocessing server in the service tier). In addition, in
our model, the queues and the controller are located outside
the server tier. By keeping queues at the controller side and
making decisions at service completion instants, one makes
sure that the control action is taken with the full system state
known. If instead, we queued requests in the servers, the
control decisions would be made much earlier than the service
instant and latest information about the aggregate CPU times
could not be used. The instantaneous feedback and request
transfer assumption would hold true in a practical deployment
of our system, if a small ping-pong buffering mechanism is
used in the servers and the server-controller interconnection is
fast, compared to CPU processing times. Such a buffer would
hold one to two requests at a time, ensuring that the server
does not go idle.

A. Rate of convergence analysis

In practical considerations, we are interested not only for the
convergence of the sequence, but also how fast the sequence
convergences to its target.

Theorem 2 (rate of convergence): In ideally saturated
conditions, all the policies in class Π experience sub-linear
convergence to the target utilizations.

See the Appendix for the proof of this theorem. Note
that there exist standard techniques in the literature that can
accelerate convergence [23], but they are beyond the scope of
this work.

B. Time and round of convergence estimation

We have seen that convergence to the desired targets can be
slow (theoretically, sub-linear according to Theorem 2). Quite
often, sub-linearly convergent sequences approach their limit
fairly fast and then take a long time to achieve the theoretical
value. From a practical standpoint, it may be satisfactory to
know that “with high probability, we have come close to the
target”. In this section, we investigate heuristically the time
and the number of rounds that is required to enter a “sphere
of convergence around the target”. We will try to find n0 such
that, with high probability,

gi(tn) = |Ui(tn+1)− Ui(tn)| ≤ ε,∀n > n0 (9)

We begin by writing the following expression, based on eq.
(18) and following the analysis in the proof of convergence:

gi(tn) = |Ui(tn+1)− Ui(tn)| ≤

D∑
j

K · Smaxj +K · Smaxi

tn+1

(10)

where we remind that K ·Smaxi notes the maximum observable
service time for all the requests of domain i and in all sample
paths. If now we want |Ui(tn+1)− Ui(tn)| < ε ∀i ∈ D, then
from eq. (10), we can write

(D + 1) ·maxi∈D{K · Smaxi }
tn+1

≤ ε ∃n0−−→ (11)

tn0+1 ≥
(D + 1) ·maxi∈D{K · Smaxi }

ε

The time tn0+1 is an estimation for the convergence time of
all the domains to converge in a sphere of deviation ε.

1) Round of convergence n0 estimation: Furthermore, an
estimation on the round of convergence can be also made.
If we know that the time of convergence is lower bounded
when Ln is maximized, then the round of convergence is upper
bounded when every round has the minimum duration (largest
possible time of convergence with the maximum number of
rounds). This happens when only one domain participates in
the round and this happens with the minimum service time.
According to this, in a worst case scenario, the round of
convergence n0 in a sphere of deviation ε is equal to

n0 ≤
tn0+1

min
i∈D,over all n

{Sni }
(12)

In the evaluation section an extensive set of experiments
validates also that this round of convergence limit is safe.

C. Overhead Analysis and Implementation trade-offs

Because of the recursive form of eq. (18), we do not
need to maintain the whole utilization history and the entire
sample path of the corresponding random variables Ui(tn).
Therefore, the memory requirement of any policy in the
class Π grows linearly with the number of domains. The
computation overhead, on the other hand, depends on how
frequently decision instants tn occur; this frequency clearly
depends on the policy.

Although policies like OOBG and OOMS enjoy the
bounded-round, negative-drift characteristics and can be used
to satisfy the T-SLA, they are very dynamic policies and
in practice they may introduce a high communication and
computation overhead, especially in data center environments
with thousands of servers. Especially for the OOMS policy
which must calculate a decision at every service completion
instant, this overhead can make the implementation of the
algorithm prohibitive. One way to address these limitations
and avoid communication overhead is to keep the calculated
weights constant for a fixed period of time T . Under this
principle, OOBGT, a variation of the policy of OOBG is
defined as follows. For an integer number of k rounds, weights
remain the same, as long as tn+k < tn + T , meaning that we
set wni = wn+1

i = ... = wn+ki for any domain i. In the time
instant when for the minimum k, tn+k ≥ tn + T is true, then
new weights are calculated for the a new round according to
OOBG policy. Similarly to OOBGT, we define OOMST, the
T-delayed version of the OOMS policy, in order to provide a
trade-off between overhead and performance.
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Fig. 5: Ideal saturation: Service Domains requesting for predefined CPU utilization.

Similar to Theorem 1, one can show the following result for
T-delayed versions of policies. The proof is similar and thus
omitted.

Corollary 1 (Convergence to the objective): Let π denote
the T-delayed version of a policy π′ that belongs in class Π.
In “ideally” overloaded conditions, the policy π satisfies the
T-SLA defined in eq. (3); that is,

Ũi(π) = pi, a.s., ∀π. (13)

We note that, as in all feedback-based control systems,
large gain results in quick response to deviation from the
goal but causes large oscillations [24]. Finally, note that when
delayed updates are made in the case we don’t have overload
conditions, the work-conserving property is lost and the system
may experience idle time.

VI. EXPERIMENTAL EVALUATION

In addition to the theoretical analysis of the previous section,
we evaluate our policies based on experiments that address
practical considerations and overhead issues. The evaluation
procedure is based on extensive experiments using simulated
and real traces. The goals of the evaluation process are
to demonstrate how system and statistical parameters affect
convergence and provide trade offs that aim to reduce com-
munication and processing overhead.

A. “Ideally” Saturated conditions and performance demon-
stration

We first demonstrate how system and statistical parameters
affect the algorithm performance in ideally saturated condi-
tions. In all the following scenarios where ideal saturation
is presented, there is no description of the arrival process;
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Fig. 6: Performance Comparison: Service Domains requesting for predefined CPU utilization.

we assume that there are always available requests waiting
for service in the corresponding queues for all the domains.
As we presented theoretically, the class of policies is able
to handle any variability on the workload, any burstiness
phenomena or any differentiations in mean values of the
service time distributions, as long as this assumption holds.
Besides verification of the theoretical results, this step will
also give us the intuition for the more realistic scenarios with
stochastic arrivals that are examined in subsections VI-B and
VI-C.

In Fig. 5, we present example visualizations of the OOBG
and OOMS algorithm behavior where domains utilize a single
CPU. In the scenarios presented in Figures 5(a), 5(b) and 5(c),
the target vector is equal to (10%, 20%, 30%, 40%) and all
domains are served by a single server. In Figures 5(a) and 5(b)
the service time in the CPU is exponentially distributed with
mean E[Si] = 1 for all four domains; in Fig. 5(c) the mean is
different for every domain and varies according to the formula
E[Si] = 1+2∗ i. (This selection was made to “stress the con-
vergence” property.) All figures demonstrate that the algorithm
is insensitive to service process variations. A vast number of
simulations performed verified that the T-SLA is satisfied as
it was expected from the theoretical analysis, and statistical
parameters like the service rates, service variance and service
probability distribution affect the rate of convergence but not
convergence to the target itself.

In practical considerations, we are interested in how system
parameters like the number of servers and the number of
domains affect the convergence speed. In Fig. 5(d), we present
simulations for an environment where we investigate the
OOBG algorithm; the number of domains is set to D = 4 and
the number of servers varies. In the vertical axis the total abso-
lute deviation from the target vector is noted (

∑
i∈D
|Ui(t)−pi|),

while the T-SLA is ~P (t) = [pi] = (10%, 20%, 30%, 40%). All
the domains have exponential service times with E[Si] = 1.
Increasing the number of servers leads to faster convergence
since for any given time, more rounds are completed and the
system has more chances of adjusting. The number of domains
also has a direct impact on the form and rate of convergence,
as we can see in Fig. 5(e), where the total absolute deviation

from the target vector is noted in the vertical axis; increasing
the number of domains results in slower convergence. With
more domains a round takes more time to complete, less
rounds are executed in the same period of time and thus
the policy exhibits slower convergence rates. The T-SLA for
these simulations was specified as follows: p1 = 20% for
domain 1 and the rest of the domains receive equal share
from the remaining 80% of the CPU time. In the following we
investigate empirically the accuracy of the results in section
V-B. In Fig. 5(f) we demonstrate the number of rounds that are
needed to satisfy two different SLAs, and also contrast it to
the lower bound that eq. 12 provides. We present the average
number of rounds n0 required until |Ui(tn0

)−pi| < 0.01 holds
for every domain i. The averages are calculated over 1,000
samples per configuration and plotted versus the number of
domains. In all the scenarios, we use one CPU and service
times with mean E[Si] = 1 for all the domains. The first T-
SLA requires equal share between all the domains, while in the
second T-SLA one domain receives 20% and the rest share the
rest 80% of CPU power. We plot the lower bound of eq. 12
for Smaxi = SMin

i . In this case the service times are constant.
From an extended set of simulations conducted and as we can
see in this figure also, different SLAs require different number
of rounds to converge but the upper bound that eq. 12 is still
satisfied.

Overhead and trading-off analysis: In Figures 5(g) and 5(h),
we investigate how convergence of the T-delayed versions
is slowed by increasing the value of T . The simulation
scenario is D = 4, target utilizations are ~P (t) = [pi] =
(10%, 20%, 30%, 40%) and the mean service time is expo-
nential with E[Si] = 1, while all the domains utilize a single
server CPU. In Fig. 5(g), we verify that although the control
decisions are delayed and the system performance is degraded,
the T-delayed version of OOBG algorithm converges to the
goal vector. A comparison of the T -delayed version with
the OOBG case is demonstrated in Fig. 5(h), where we can
see that as T increases, oscillations persist for longer. We
note that the one domain per round strategy of OOMST is
rather penalized in this scenario; OOBGT utilizes the idea
of the round and appears superior. This can be seen in Fig.
5(i), where a comparison of convergence speed is presented
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between the two policies for the same simulation environment.
The convergence criterion was |Ui(t) − pi| ≤ 0.01 for all
domains i for at least 5,000 service events. As we can observe,
only for small values of T , OOMST is slightly superior than
OOBGT. Note, that there exists a value of period T where
OOMST and OOBGT experience similar convergence time
and above this value OOBGT offers faster convergence than
the corresponding OOMST.

B. Stochastic Arrivals: Evaluation and Comparisons

In this subsection we relax the assumption of ideal satura-
tion and we present the performance comparison between the
following schemes under stochastic arrivals: Static Weighted
Round Robin where the weights are set proportionally to
the SLA (referenced as WRR); Dynamic Weighted Round
Robin (the OBG algorithm proposed); Credit-based scheduling
(referenced as Credit); and a Dynamic probabilistic scheme
proposed in our previous work [25] using a linear approx-
imation technique (referenced as Probabilistic). The Credit
scheduler is the successor of SEDF and BVT schedulers,
used to schedule vCPUs in the XEN hypoervisor [3][4]. The
performance comparison is made under three configuration
setups where four domains request service from a single CPU
and the goal vector is set equal to 10%− 20%− 30%− 40%.

Setup 1- Fig.6(a): all domains can achieve their goal and
all have Poisson arrivals and exponential service time distri-
butions with the same mean. This simple experiment is used
to investigate the speed of convergence metric. Although in
this setup all policies eventually can achieve the SLA, the two
dynamic schemes (our proposed) OBG and Probabilistic (from
[25]) converge faster to the goal. The reason is that a dynamic
scheme is able to quickly adapt to load fluctuations, leading to
smaller oscillations. For the Credit-based scheduling we note
that although it is able to differentiate according to the SLA,
its performance is heavily dependent on the configuration of
the credit allocation and the reset procedure [26]. These can
be done in numerous ways; we chose to reset when credits for
all the domains are equal to zero, allowing negative credits,
where we allocate credits based on the T-SLA objective ratio
(credit equals pi multiplied by a constant for all the domains).
In the Xen hypervisor, the credit update period is 30ms.
However, depending on the context of the application (e.g.,
web server operation), this period can be configured in order to
avoid over-allocation more often than under-allocation [4]. In
some cases, the configuration simplicity of Dynamic Weighted
Round Robin is an important factor when comparing with a
Credit scheduler.

Setup 2-Fig.6(b): We consider a scenario with bursty traffic
and a feasible goal vector (meaning that λi · E[Si] ≥ pi,∀i ∈
D). The arrivals follow an ON/OFF pattern [27], where during
the ON period they have exponential inter-arrivals and both
ON and OFF periods are exponentially distributed. In this
experiment we showcase how fast the algorithms adapt to
bursty traffic to achieve the CPU goals. The same comments as
before hold, where in this case larger convergence periods are
required by all schemes because of the OFF periods of some
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Fig. 7: Implementation in a customized WSO2
Enterprise Service Bus emulator.

domains. In this case all schemes are able to differentiate (even
WRR) since the goal vector is feasible. Again OBG algorithm
and the dynamic probabilistic one outperform the Credit and
the WRR schedulers.

Setup 3-Fig.6(c): again a setup with mixed workloads, where
nevertheless in this case not all the domains can achieve their
goals (some domains have less demand than their assigned
max utilization). Injected traffic is again composed of bursts
of requests for some domains, while domain 1 arrivals follow
a Pareto distribution (with shape parameter equal to 0.8). Also
the service time distributions although exponential for all, have
different means.

First we note that, in this case, as we can see static WRR has
the worst performance in terms of the deviation from the goal
vector metric. The reason is that the policy is giving static pri-
orities and thus cannot capture the dynamics of load changes.
The probabilistic algorithm performs better than WRR but
worse than OBG because the time required to estimate the
correct probability weights is increased due to the bursty
traffic. The correlation between the prediction period used
and the actual idle periods experienced, results in probability
(weight) allocation that leads to “wrong and slow” response to
the idling periods. As we discussed in the analysis of Setup 1,
many variations of credit-based scheduling are possible. The
performance of the one we chose is heavily affected by idle
periods. As we present in the following section using real
traces, for a different, “smoother” workload variations, OBG
and Credit scheduler experience similar performance.

C. Evaluation using real traces

The available traces at our disposal come from the Mo-
bileBroker case. In this section, we use this data set in order
to benchmark the performance of the OBG algorithm. The
implementation-emulation scenario is depicted in Fig. 7. We
use a custom service mediation application that can be used to
emulate actual ESB operations, for example WSO2 ESB [17]
functions. The goal of the following analysis is to demonstrate
the performance of OBG algorithm in realistic conditions
emulating an operational environment. Three service domains
(clients) generate http/soap traffic (XML-RPC requests over
http) and send it to an http controller (Java Servlet). The
http controller is used to a) accept this traffic in a queue per
domain, b) perform scheduling decisions and send traffic to the
service mediation application in the custom ESB. The service
mediator is responsible to: process the requests, forward them
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to an endpoint service and return to the client the response
from the service. The trajectory of the total daily traffic is
shown in Fig. 2(a) and the traffic pattern per domain is
depicted in Fig. 2(b). In our effort to emulate the conditions of
the actual application, we use a custom mediation service with
an average service time of 20ms per request (which was the
one also reported in real conditions). Furthermore, we consider
the same type/size of request per domain.

Implementation details: In practice, the scheduler could be
implemented inside the mediation application, or outside by
registering domains and assigning traffic per domain, where
in this demonstration we follow the latter approach and we
implement the scheduler inside the controller. This is similar to
interposed request schedulers [28] where the resource control
is applied externally and the server is treated as a black box.
The http controller is a custom multi-threaded Java Servlet
deployed in Glassfish 3.1.2 Application Server. The receiving
process is separated from the scheduling process at the thread
level. This way, while one thread puts requests in the queues
the other is able to pull asynchronously. In principle, assigning
different thread pools to different operations may lead to
unpredictable behavior, since these operations rely on the way
the OS performs thread scheduling [5]. The servers are hosted
in guest VMs that reside in a single i5 - 3.2GHz, 8G memory
Ubuntu server machine. The Servlet(scheduler), the mediation
application and the endpoint service are hosted in a single
guest VM to avoid communication overhead, while the clients
are hosted in different VM machines (one per client), also
hosted in the same physical machine.

Evaluation scenarios: We benchmark the OBG algorithm
in Equal share and Unequal share scenarios:

Equal share scenario: In this scenario, we want all the
carriers (domains) to receive equal share from the CPU of
the server hosting the mediation service. Also, according to
the SLA defined in eq. 3, when the total traffic is less than
the throughput capacity, every domain will use the maximum
achievable CPU cycling share. The backlog evolution per
domain for that interval is presented in Fig. 8(a) and in Fig.
8(b) the allotted utilization is presented. As we can conclude
by these figures, for the period when all the domains have
available requests in queues, domain 3 requests that tend to
dominate the system, are held back. When the backlog is close
to zero for domains 1 and 2 (at approximately 11:54), the
utilization is proportional to the arrival rate of every domain
and thus domain 3 starts to receive more utilization. In this
scenario, OBG can be used to offer overload protection and
load balancing functionality, while it converges fast (in less
than 1 minute).

Unequal share T-SLA (50%-30%-20%) Scenario: In the
second scenario, we want each domain to receive a predefined
percentage {50%, 30%, 20%} from the server CPU cycles.
As we can see in Fig.9(a), where the backlog evolution is
presented and Fig. 9(b) where the allotted utilization is pre-
sented, the algorithm again blocks domain 3 and differentiates
according to the T-SLA.

For both scenaria, a comparison is also presented between

OBG , WRR, the probabilistic algorithm based on predictions,
presented in [25] and a Credit Scheduling, using the workload
traces. As we can see, in both cases where the goal was set
equal to {33%, 33%, 33%} Fig.8(c) and {50%, 30%, 20%},
Fig.9(c) respectively, the only algorithm that fails to meet
the objective is the WRR. The reason is that is not able to
adapt to the workload variations and satisfy the objectives. The
remaining algorithms, although in a short time scale, are able
to provide the required differentiation under heavy load. Note
that in the comparison presented in Fig. 9, Credit scheduling
and prediction techniques were able to differentiate traffic
according to the objective, but not able to optimally control
the allocation accuracy and the relative error, due to arbitrary
ON/OFF periods for all the domains. In contrast, in the traces
experiment a single domain dominates the system (domain
3), while the other two domains have low arrival rate. In this
case of smooth workload changes, both Credit scheduling and
prediction techniques experience almost identical performance
with OBG. In conclusion, static WRR policies fail to meet the
objective under dynamic workloads; in the case of complex
workloads for multiple domains, Credit schedulers must be
tuned for optimal performance, while prediction techniques
and DWRR can handle the dynamics of the system better and
increased accuracy, at the expense of increased overhead.

D. Remark regarding types of service

Our approach in this work focuses on stateless service
designs, where we do not examine any relationships between
services or dependencies on the state information. Instead
we adopt an approach where multiple services are exposed
as a single aggregate service (for example the campaign
participation service). In order to make our approach able
to handle session based workloads and handle inter service
dependencies, a model of the state information as well as
a model of processing chains for modeling the relationship
between successive requests is required [27]. In the case where
services are deployed in multiple servers, in addition to the
state information an enhanced statistics collection mechanism
is required. The goal would be again to model the processing
times of the individual services called (synchronously or asyn-
chronously) and keep track of the cycles/utilization allocated
to every domain.

VII. RELATED WORK

In addition to the related work referenced in the introduc-
tion, our analysis is related to the large family of GPS/WFQ
scheduling principle [8][29][30] and Deficit/Weighted Round
Robin schemes [31][32] [15]. For example, in [15] fair
scheduling is applied and a weight is assigned to each thread
based on its priority, where fairness aims to bound the positive
and negative processing time lags. All the negative drift
policies use the same concept of dynamic weight allocation
that updates the threads round slice based on new weights
according to the deviation that the lag (processing time) had
from the WFQ goal [15]. We use ideas similar with “queue
skipping” based on some current metric, but in contrast with
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(a) Backlog evolution.
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(b) Utilization achieved per domain.
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(c) Comparison between scheduling policies.

Fig. 8: Study of stochastic arrivals using traces. The CPU utilization goal vector is set equal to 33%, 33%, 33%.
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(b) Utilization achieved per domain.
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(c) Comparison between scheduling policies.

Fig. 9: Study of stochastic arrivals using traces. The CPU utilization goal vector is set equal to 50%, 30%, 20%.

max packet length our “skipping” criterion is different, the
goal is to achieve a different objective (CPU cycles share not
throughput) and we also use a different notion of round. Also
we provide not an algorithm but a class of algorithms that
can be used to guarantee CPU shares. Proposals to change
priorities dynamically, using feedback-based stochastic control
are presented in works like [33] and [34]; the authors of
these works use a similar approach to ours but focus on rate
control through scheduling. Service differentiation based on
feedback control is also investigated in [35], while in [10]
feedback control together with rate predictions are used to
provide service differentiation by means of slowdown.

The problem formulation studied in this work, was also
defined in [36] where a preliminary analysis was made for the
case of ideally saturated conditions. The resource provisioning
T-SLA problem has also been addressed by the same authors in
[25] and [37] but in a different context. In the former approach
a linear approximation technique was proposed, while in the
latter approach a stochastic queue management mechanism
with plain Round Robin scheduling was used to perform
negative drift operations whenever over-provisioning of CPU
resources. Nevertheless, in both [25] and [37] we do not
provide proof of convergence and we present convergence to
the goal through simulations. In contrast to all our previous
works and especially [36], we extend the proof in [36] to a
more general class of policies; we provide time and round of
convergence analysis; provide rate of convergence analysis;
extend the SLA definition to cases where the assumption

of ideal saturation is relaxed; we enhanced the comparison
with other scheduling schemes under stochastic arrivals and
we examine real traces from a mobile computing company
to evaluate the DWRR algorithms performance under real
conditions.

Work in the area of guaranteed CPU performance through
scheduling, also related to our work, is exploited by hypervisor
technologies [1][2][3][4]. Xen platform uses Credit schedul-
ing, which is the successor of BVT and SEDF schedulers
[3][4] and VMware ESX server operates with a custom
scheduling mechanism that uses the concept of reservations
and shares [1]. In the VMWare approach, a “reservations”
parameter specifies the guaranteed minimum and maximum
CPU allocation and a “shares” parameter measures the current
configured amount of shares of the VM (a MHzPerShare met-
ric based on the current utilization of the virtual machine). To
conclude the state of the art section, schemes where processes
are separated into categories based on their need for CPU
cycles are used in Multilevel feedback queueing [38] systems.
Related work in CPU power management policies for service
applications can be found in [39] and [40]. In [39] priority
scheduling is proposed with a penalty function that is used
to adjust throughput per client; in [40] the authors propose a
method for estimating CPU demand of service requests based
on linear regression between the observed request throughput
and resource utilization level.
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VIII. CONCLUSIONS AND FUTURE WORK

In this work, we defined a class of Dynamic Weighted
Round Robin scheduling policies that can be used to provision
CPU resources in the server tier of a data center among
competing service domains. The objective of such provisioning
is to guarantee to each domain a pre-specified percentage of
the CPU resource. We provided the necessary mathematical
framework and proofs of convergence for a class of policies
that does not require exact knowledge of service time statistics
and has adjustable communication and computation overhead.
Besides theoretical analysis, extensive simulations were per-
formed based on real and synthetic traces.

A promising direction for future work that is applicable
to cloud environments would be along the lines of end-to-
end problems: the control policies in this scenario must take
into account interactions between multiple tiers of servers.
Although in many applications CPU is the dominant factor
that affects service delivery, in many applications a very
large number of factors (networking, CPU, memory, software
orchestrations, etc.) affect the performance of services. Inves-
tigation of more complex SLAs that take into the account
the relationship between various performance metrics and the
dependencies between services are left for future work as well
as study of metrics like completion time to capture the effects
arised in the case of session based workloads. Further research
must be also made in order to meet implementation constraints
in highly dynamic environments where the ideal saturation
concept does not hold.
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IX. APPENDIX

First we derive a helpful intermediate result which bounds
by how much the utilization of every domain exceeds the goal
at any round. Since the upper bound decays with tk, we expect
that the utilizations concentrate around the goal for large k.

Lemma 1: For any domain i and round k, the utilization is
upper bounded by

Ui(tk) ≤ pi +
K · Smaxi

tk
. (14)

Proof [Proof of lemma 1] First consider a round n for which
the utilization is smaller than the goal. Then we readily get

Ui(tn) ≤ pi < pi +
K · Smaxi

tn
. (15)

Next we study a number of consecutive rounds k1, . . . , kξ
for which the utilization of domain i is above the goal.
Observe that domain i does not receive service within rounds

k2, · · · , kξ since its utilization exceeds the goal (see policy
definition). Therefore we can readily conclude that U(tkξ) <
U(tkξ−1

) < · · · < U(tk2) < U(tk1). Therefore it suffices to
prove an upper bound only for rounds that succeed a round
where the utilization was below goal. For these specific rounds
we perform the following analysis.

Suppose k is a round for which Ui(tk) > pi and Ui(tk−1) <
pi. Let t̃i,k be the largest instant within round k such that
Ui(t̃i,k) = pi, clearly such an instance must exist. Also, let
S̃ki,i be the remaining service time of domain i in round k, after
the time instance t̃i,k. Then using eq. (6) for tk < t ≤ tk+1

we derive

Ui(t)− pi ≤
t̃i,k
t
Ui(t̃i,k) +

S̃ki,i
t
− pi (16)

=
t̃i,k
t
pi +

S̃ki,i
t
− pi =

S̃ki,i
t
− t− t̃i,k

t
· pi ≤

S̃ki,i
t

Since K · Smaxi is a universal upper bound of service within
a round, we have S̃ki,i ≤ K · Smaxi and so

Ui(t) ≤ pi +
S̃ki,i
tk
≤ pi +

K · Smaxi

tk
. (17)

Proof [Proof of theorem 1] We will prove that for every
domain the utilization sequence converges to the goal almost
surely.

lim
k→∞

Ui(tk) = pi a.s.

Consider a subset S of the sample space Ω in which Sni <
K ·Smaxi , such that P (S) = 1. All the subsequent statements
in the proof hold true for samples ω in this set; for notational
simplicity, dependence of sample paths on ω is omitted. The
corresponding relations used for calculations in the discrete
time for the sampled sequence is

Ui(tn+1) =
tn
tn+1

Ui(tn) +
Sni
tn+1

, (18)

Using lemma 1, first we note that lim sup
k→∞

K·Smaxi

tk
= 0 since

K · Smaxi is by definition almost surely finite. Then, we have

lim sup
k→∞

Ui(tk+1) ≤ lim sup
k→∞

pi + lim sup
k→∞

K · Smaxi

tk
= pi a.s

(19)
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Additionally, note that

lim inf
k→∞

Ui(tk+1) = lim inf
k→∞

(1−
∑

j∈D\{i}

Uj(tk+1)) (20)

≥ 1 + lim inf
k→∞

(−
∑

j∈D\{i}

Uj(tk+1))

= 1− lim sup
k→∞

∑
j∈D\{i}

Uj(tk+1)

≥ 1−
∑

j∈D\{i}

lim sup
k→∞

Uj(tk+1)

eq.(19)
≥ 1−

∑
j∈D\{i}

pj = pi = lim sup
k→∞

Ui(tk+1)

Since it must also be lim inf
k→∞

Ui(tk) ≤ lim sup
k→∞

Ui(tk), we

conclude that lim inf
k→∞

Ui(tk) = lim sup
k→∞

Ui(tk) = pi. Therefore

the limit exists and lim
k→∞

Ui(tk) = pi a.s. Using the following
lemma, the proof is completed.

Lemma 2: If the sampling sequence Ui(tk) at the beginning
of every round converges almost surely, then the continuous
time utilization Ui(t) converges to the same limit a.s.

Proof [Proof of lemma 2] Pick any t within some round k, i.e.,
in the interval [tk, tk+1], we will show that Ui(t) converges
to the goal. Let Ti(tk, t) denote the service time received for
domain i within the time interval [tk, t]. Then using eq. (6)

Ui(t) =
tk
t
· Ui(tk) +

Ti(tk, t)

t
and hence

|Ui(t)− Ui(tk)| =
∣∣∣∣( tk − tt

)
· Ui(tk) +

Ti(tk, t)

t

∣∣∣∣ (21)

by the choice of t, we have that t − tk <
∑
j∈D

K · Smaxj and

therefore |(tk − t)| ≤
∑
j∈D

K · Smaxj . Then

|Ui(t)− Ui(tk)| =
∣∣∣∣ tk − tt

· Ui(tk) +
Ti(tk, t)

t

∣∣∣∣ (22)

≤
∣∣∣∣ tk − tt

∣∣∣∣ · Ui(tk) +

∣∣∣∣K · Smaxi

t

∣∣∣∣
≤

∣∣∣∣∣∣∣
∑
j∈D

K · Smaxj

t

∣∣∣∣∣∣∣+

∣∣∣∣K · Smaxi

t

∣∣∣∣
=

K · Smaxi +
∑
j∈D

K · Smaxj

t
Also applying the triangle inequality we have

|Ui(t)− pi| ≤ |Ui(t)− Ui(tk)|+ |Ui(tk)− pi| (23)

From eq.(22) and eq.(23) we conclude that

lim sup
t→∞

|Ui(t)− pi| ≤ lim sup
t→∞

|Ui(t)− Ui(tk)|+ 0 ≤ 0.

Since lim inf
t→∞

|Ui(t)− pi| > 0, we conclude that

lim sup
t→∞

|Ui(t)−pi| = lim inf
t→∞

|Ui(t)−pi| = lim
t→∞

|Ui(t)−pi| = 0

from which we conclude that Ui(t)
a.s.→ pi.

Proof [Proof of Theorem 2] Let

Ri(tn) =
|Ui(tn+1)− pi|
|Ui(tn)− pi|

(24)

the rate of convergence of Ui(tn) sequence can be found
by lim

n→∞
Ri(tn) (since this limit exists by Theorem 1).

According to eqs. (7) and (24), we have that

Ri(tn) =
| tntn+1

Ui(tn) +
Sni
tn+1
− pi|

| tn−1

tn
Ui(tn−1) +

Sn−1
i

tn
− pi|

(25)

where for simplicity of notation Sni in eq. (25) contains the
indicator function of eq. (7). The numerator of the right part
of the equation is equal to∣∣∣∣ tntn+1

Ui(tn) +
Sni
tn+1

− pi
∣∣∣∣ =

∣∣∣∣ tn−1tn+1
Ui(tn−1) +

Sn−1i

tn+1
+

Sni
tn+1

− pi
∣∣∣∣

(26)

After we replace eq. (26) in eq. (25) and perform some
arithmetic operations, we have that:

Ri(tn) =
tn
tn+1

·
∣∣∣∣1 +

Sni − Ln · pi
tn−1Ui(tn−1) + Sn−1i − tn · pi

∣∣∣∣ (27)

where we used the fact that tn+1 = tn + Ln. Let

g(tn) =
Ni(n)

Di(n)
=

Sni − Ln · pi
tn−1Ui(tn−1) + Sn−1i − tn · pi

(28)

=
Sni − Ln · pi

tn−1[Ui(tn−1)− pi] + Sn−1i − Ln−1 · pi
where Ni(n) denotes the numerator and Di(n) denotes the
denominator. We want to show that lim

n→∞
g(tn) = 0. A

minor technical difficulty arises from the presence of the term
tn−1[Ui(tn−1) − pi] in the denominator, which leads to an
∞ · 0 term in the limit.

To overcome this technicality, we define next two random
sequences vn(tn) and hn(tn) as follows:

vn(tn) =
Sni − Ln · pi

tn−1[Ui(tn−1)− pi + un
i ] + Sn−1i − Ln−1 · pi

hn(tn) =
Sni − Ln · pi

tn−1[Ui(tn−1)− pi + hn
i ] + Sn−1i − Ln−1 · pi

where vni ,hni are random sequences chosen to make the
bracketed terms nonzero and in addition obey the following
rules:

13



Ni(n) Di(n) un
i hn

i

≥ 0 > 0 un
i > 0 −Di (n)

tn−1
< hn

i < 0

≥ 0 < 0 0 < un
i < |Di (n)|

tn−1
hn
i < 0

< 0 > 0 −Di (n)
tn−1

< un
i < 0 hn

i > 0

< 0 < 0 un
i < 0 0 < hn

i < |Di (n)|
tn−1

These rules guarantee that we can bound g(tn) as follows:

vn(tn) < g(tn) < hn(tn), ∀n.

We can easily see, however, that lim
n→∞

vn(tn) = 0 and
lim
n→∞

hn(tn) = 0. (Both limits go to zero since by definition

∀n, Sni < K ·Smaxi <∞, Ln =
∑

i:wni ≥1
Sni ≤

|D|∑
i=1

K ·Smaxi <

∞). By the squeezing principle it follows that lim
n→∞

g(tn) = 0

and thus we can calculate the limit in eq. (27):

lim
n→∞

Ri(tn) = 1 · |1 + 0| = 1 (29)

The utilization approaches the target sub-linearly although
variable speed may be observed during every sample path.
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