Experimental Evaluation and Comparative Study on Energy Efficiency of the Evolving IEEE 802.11 Standards

Presenting: *Giannis Kazdaridis Email: iokazdarid@gmail.com*

<u>Authors:</u> Stratos Keranidis, Giannis Kazdaridis, Nikos Makris, Thanasis Korakis, Iordanis Koutsopoulos and Leandros Tassiulas

> Date: 11/06/2014 Conference: e-Energy, Cambridge, UK

Our Direction

- ✓ In this work we characterize the Energy efficiency of 802.11n across varying:
 - Traffic loads.
 - Protocol parameters
 - Topology configurations.
- ✓ We especially compare our findings with the base standard 802.11a/g to show the improvements that it provides.

✓ We expect our detailed findings to act as guidelines for the design of novel adaptation algorithms and future protocol versions.

- Introduction
- Measurement Set-Up
- Realistic Experimentation:
 - ✓ Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - ✓ Varying Frame Payload Length in Low-SNR environment
- Conclusions

IEEE 802.11n penetration in the market

✓ During the recent years the "smart" mobile devices existing in the market support the IEEE 802.11n standard in an effort to provide high-throughput performance.

- ✓ Till now, only network performance was the main concern.
- ✓ However, the restricted battery autonomy of mobile devices has raised concerns regarding the energy efficient operation of the wireless transceivers.

IEEE 802.11a/g Energy Profiling

✓ The base standard IEEE 802.11a/g is characterized by linear relationship between the energy consumption per bit and PHY-layer transmission/reception.

Energy Consumption per bit of IEEE 802.11 compatible NICs

IEEE 802.11n Energy Profiling

 How is the consumption of the MIMO enabled 802.11n affected, across varying physical-layer rates?

- Activation of additional RF chains that enables MIMO communication results in remarkably increased power consumption saving (up to 2.5x at the NIC level).
- Those are the nominal energy per bit values.
- What happens under realistic environments in complex configurations?

Introduction

- ✓ Measurement Set-Up
- Realistic Experimentation:
 - ✓ Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - ✓ Varying Frame Payload Length in Low-SNR environment

Energy Monitoring Framework (EMF)

- Power consumption can be determined by direct measurement of the input voltage and current draw at the device under test.
- Actual measurements can be taken using a fast voltage sampling device, as follows:

The instantaneous power consumption is the product of the input voltage and current draw on the current shunt resistor R:

$$P(t) = V_{IN} \frac{V_R(t)}{R}$$

Energy Monitoring Framework (EMF)

- We developed a special card that allows online monitoring of wireless testbeds infrastructure.
- The developed card is composed of open-source commercial and custommade components, mainly based on Arduino compatible modules.
- ✓ The developed card is installed in NITOS testbed nodes and together with the developed OMF service allows remote experimentation to NITOS users.

Developed Energy Monitoring Device

Modified mini-pcie adapter that allows monitoring of Wireless Interfaces

Monitoring Device Installed in NITOS node

Equipment employed for the experiments

- In the experimental phase we employed two wireless interfaces:
 - ✓ An Atheros IEEE 802.11a/g compatible:
 - ✓ AR5424 chipset.
 - madwifi open-source driver.
 - ✓ An Atheros IEEE 802.11n compatible:
 - ✓ 3x3 MIMO.
 - ✓ AR9380 chipset.
 - ✓ Ath9k open-source driver.

Component	Type
Motherboard	Commell LE-575X
CPU	Intel Atom D525 (1.8 GHz)
RAM	Kingston HYPERX DDR3 - 4GBs
Hard Drive	Samsung SSD - 64 GBs
Power Supply	60W - 12V
OS	Ubuntu 13.04
Wireless cards	Atheros 9380 / 5424
Wireless Drivers	madwifi-0.9.4 / backportsv3.12.1

Node specifications

ATHEROS

Atheros 802.11 a/b/g

Atheros 802.11n 3x3

Icarus Node

Measurement setup – Experimental Topology

- We create two different setups:
 - One with high-SNR:
 - Nodes closely located.
 - ✓ Tx power at maximum (20dBm).
 - ✓ Illustrates the benefits of spatial multiplexing in terms of energy.

And one with low-SNR:

- ✓ Nodes far located.
- ✓ Tx power at minimum (0dBm).
- Illustrates the benefits of spatial diversity in terms of energy.

Experimental Topology

Introduction

- ✓ Measurement Set-Up
- Realistic Experimentation:
 - Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - ✓ Varying Frame Payload Length in Low-SNR environment

Varying application traffic load

- In this experiment we vary the application traffic load and measure the power consumption in each setup on both the NIC and total node level.
- We repeat the same experiment by activating the supported MAClayer aggregation mechanisms of each setup:
 - ✓ <u>802.11a/g</u>: **Atheros Fast Frames**:
 - Combines two MAC-frames into the payload of a single aggregated frame.
 - ✓ <u>802.11n</u> : **A-MPDU**:
 - Combines multiple frames into a single MAC layer frame without exceeding the 65.536 bytes.

Varying application traffic load – Pow. Consumption

We observe that Aggregation is activated after 40Mbps (on saturation).

Varying application traffic load – Energy/bit

We plot the Eb.

Varying application traffic load – Energy/bit

 The comparison of the Eb values of each standard at their saturation points shows that 802.11n standard offers more than 80% energy reduction.

Introduction

- ✓ Measurement Set-Up
- ✓ Realistic Experimentation:
 - ✓ Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - ✓ Varying Frame Payload Length in Low-SNR environment

Varying frame payload length – High SNR

✓ We observe a reduction of **0.5W** at the node level although we achieved **an increase of 60Mbps** on throughput performance.

Varying frame payload length – High SNR

 A-MPDU assisted 802.11n protocol can reduce Eb at the node level by 90% in comparison with 802.11a/g when transmitting low-payload lengths.

Introduction

- ✓ Measurement Set-Up
- Realistic Experimentation:
 - ✓ Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - Varying Frame Payload Length in Low-SNR environment

Varying frame payload length – Low SNR

 We vary the frame payload length in the supported PHY rates when in low-SNR conditions.

 We observe that higher throughput in each different PHY rate is attained in different frame payload size.

802.11a/g – Eb at NIC level

802.11n – Eb at NIC level

- ✓ We observe that lower Eb is attained when transmitting with the most efficient frame payload size in terms of throughput performance.
- Which implies that it is important to take under consideration both the MAC frame length and the PHY bit rate, towards achieving higher throughput and lower energy consumption.

Introduction

- ✓ Measurement Set-Up
- Realistic Experimentation:
 - ✓ Varying Application Traffic Load
 - ✓ Varying Frame Payload Length in High-SNR environment
 - ✓ Varying Frame Payload Length in Low-SNR environment

- We illustrated that:
 - Proper activation of RF chains drives at significant energy savings.
 - Application of MAC-layer Aggregation mechanism delivers increased throughput resulting in considerable energy savings.
 - ✓ A-MPDU assisted 802.11n protocol can reduce Eb at the node level by 90% in comparison with 802.11a/g when transmitting low-payload lengths.
 - Several factors need to be taken under consideration in order to design a novel energy efficient protocol.

THANK YOU!!

Presenting: *Giannis Kazdaridis Email: iokazdarid@gmail.com*

Experimental Evaluation and Comparative Study on Energy Efficiency of the Evolving IEEE 802.11 Standards

Date: 11/06/2014 Conference: e-Energy, Cambridge, UK

Demo Invitation: Realistic Energy Consumption Profiling of Mobile Devices

- ✓ We enable online power consumption monitoring of portable devices through the integration of a tiny custom-designed board, in order to provide energy efficiency evaluation under realistic mobile scenarios.
- ✓ <u>Advantages</u>:
 - Ultra low-size able to fit in the battery pack of smartphones.
 - Online monitoring of realistic mobile scenarios.
 - Long-term monitoring (SD card storage).
 - Low-cost fabrication (35 e).
 - Based on Arduino open source hardware and firmware.

Monitoring Device deployed on a smart-phone

Energy Monitoring Device

Specifications:

- 8-bit MCU runs at 8MHz.
- High sampling rate of 17kHz.
- 10-bit resolution.
- Low-power consumption (20mA).

