
NITOS BikesNet: Enabling Mobile Sensing
Experiments through the OMF Framework in a

city-wide environment

Giannis Kazdaridis, Donatos Stavropoulos, Vasilis Maglogiannis,
Thanasis Korakis, Spyros Lalis and Leandros Tassiulas

Department of Electrical and Computer Engineering
University of Thessaly, Greece

Centre for Research and Technology Hellas, CERTH, Greece
Email: {iokazdarid, dostavro, vamaglog, korakis, lalis, leandros}@uth.gr

Abstract—In this paper we present the NITOS BikesNet
platform, a city-scale mobile sensing infrastructure that relies on
bicycles of volunteer users. NITOS BikesNet employs a custom-
built embedded node that can be equipped with different types of
sensors, and which can be easily mounted on a bicycle in order to
opportunistically collect environmental and WiFi measurements
in different parts of the city. Experimenters can remotely reserve
and control the sensor nodes on bicycles as well as collect/visualize
their measurements via the OMF/OML framework, which was
extended in order to handle the intermittent connectivity and
disconnected operation of the mobile nodes. We also provide
a performance analysis of our node prototype in terms of
sensing latency, end-to-end data transmission capability and
power consumption, and report on a first experiment that was
performed using NITOS BikesNet in the city of Volos, Greece.

I. INTRODUCTION

Driven by recent technological advances, mobile devices
become increasingly sophisticated and miniaturized. Tablets,
smartphones and various wearable devices, with embedded
cameras, microphones, accelerometers, GPS and other types
of sensors, are now part of everyday life. Carried by people
everywhere they go, such devices can record a wealth of data,
as well as give rise to new applications. For instance, the
glasses launched by Google allow users to take photos and
videos on the go, just by issuing voice commands. Along the
same lines, smart wristwatches or clothes can infer the user’s
physical activity or detect accidents.

But apart from benefiting the individual, mobile and wear-
able sensors and information devices can also be useful for the
society as a whole. In the spirit of so-called participatory sens-
ing [1], people may contribute to a common goal by recording
and publishing information on a voluntary basis, without even
knowing each other; for instance, overflowed garbage bins or
street potholes can be reported as part of daily commuting
activities. More generally, one can view people with their
smartphones and wearable devices as a mobile ad-hoc sensing
infrastructure, which can be employed, in an opportunistic
or targeted way, to perform large-scale sensing tasks. Note
that the coverage and/or density that can be achieved this
way could very well surpass that of any planned/fixed sensing
infrastructure; in particular, since many governments and local
authorities cannot afford to setup, operate and maintain nation-
wide or even city-scale sensor networks.

At the same time, there is a rising need for the research

community but also companies (in particular SMEs) to con-
duct experiments and pilot deployments in the real world, as
opposed to a controlled lab setting. This holds even more
for Internet-of-Things and crowdsensing scenarios, where real
people with real behaviors and real mobility patterns are
required to evaluate different approaches under realistic con-
ditions at a large scale. However, while a lot of work has been
done on testbeds that can be used remotely by researchers to
run experiments on fixed wireless sensor networks, much less
has been done to support experimentation with mobile sensor
networks.

In this paper, we present the NITOS BikesNet framework,
which can be used to realize such a testbed at the scale of
an entire city, using sensor nodes mounted on bicycles. Our
platform is based on a custom wireless embedded node that can
host different types of sensors. The sensor nodes are mounted
on the bicycles of ordinary people who go about their daily
routine as usual. NITOS BikesNet allows external researchers
to plan experiments, remotely control the operation of the
mobile nodes (e.g., turn on/off individual sensors, or set the
sensor sampling period), and retrieve, process and visualize
their measurements. The management of the sensor nodes
and the data produced by them is done via the cOntrol and
Management Framework (OMF) [2] and the OMF Measure-
ment Library (OML) [3], respectively. Leveraging our previous
experience in delay tolerant networking (DTN) [4], [5], we
extend OMF to handle intermittent and disconnected operation
due to mobility, in a largely transparent fashion: on the one
hand, each node saves its measurements on local stable storage,
and incrementally uploads data to the NITOS server when it
has Internet connectivity; on the other hand, the commands
issued by the experimenter are queued on the NITOS server,
and are forwarded to the sensor nodes when they contact the
server.

The main contributions of this paper are: (i) we identify
the most important requirements for a testbed that allows
experimentation with mobile sensor nodes; (ii) we describe
the extensions made to the OMF framework in order to deal
with mobility issues; (iii) we describe the implementation of
our sensor node prototype; (iv) we analyze the performance
of the node in terms of sensing latency, end-to-end data
transfer capability and power consumption; and (v) we present
indicative results from a first experiment that was performed



using our platform. We believe that at least some aspects of
our work have wider applicability, and can inspire the design
or enhancement of other testbeds.

The rest of the paper is organized as follows. Related work
is presented in Section II. Section III lists the most important
requirements for a testbed that allows experimentation with
mobile sensor nodes, along with the choices we made for the
NITOS BikesNet platform. Section IV presents the NITOS
BikesNet architecture, the extensions made to OMF to deal
with the mobility of the sensor nodes, and the implementa-
tion of our sensor node prototype. Section V discusses the
performance of the sensor node, while Section VI presents an
experiment that was realized using NITOS BikesNet in the city
of Volos. Finally, Section VII concludes the paper and outlines
directions for future work.

II. RELATED WORK

Bicycles related implementations: To the best of our
knowledge, the only system that is similar to our work is [6].
It is based on the Moteiv Tmote Invent platform, and uses
a variety of sensors to measure environmental parameters as
well as to record data about the performance/fitness of the
cyclists themselves. Unlike NITOS BikesNet, the system was
not designed as an open testbed that allows external researchers
to perform experiments of their own. Also, the sensing devices
mounted on the bicycles are not easily customizable, whereas
the NITOS mobile sensor node can be equipped with different
sensors according to the application’s requirements. Another
work that focuses on bicycles is presented in [7]. In this case,
cyclists use their mobile phone to record and share the paths
traveled and ride statistics, which in turn can be used to infer
the difficulty and noisiness of the various routes. However, this
is a dedicated application for the bicycle owners themselves
rather than a testbed infrastructure for running experiments that
exploit the sensing capabilities of other people’s bicycles. In
addition, for all practical purposes, one is limited to whichever
sensors are available on smartphones.

Sensing infrastructures/frameworks: An exemplary case
of a city-scale wireless sensor network testbed is SmartSan-
tander [8], which provides access to numerous fixed and some
mobile sensor nodes deployed in the city of Santander. The
mobile nodes are based on commercial sensing devices in-
stalled on public transport buses and municipality vehicles, and
are mainly used to perform air quality measurements through-
out the city. Moreover, the node control plane is implemented
over GPRS and assumes practically constant connectivity, as
opposed to NITOS BikesNet that supports an asynchronous
transfer of both control commands and sensor measurements.
The testbed management functionality of SmartSantander is
based on an adapted version of WISEBED [9], which also
supports the reprogramming of sensor nodes over the air.
Still, in [8], the creators of SmartSantander acknowledge the
importance of adopting a widely used experiment management
framework such as OMF, which is embraced by the majority
of the FIRE initiative [10] projects. As another example of a
city-scale mobile sensor network, [11] describes a system de-
veloped for the city of Zurich, Switzerland, where trams carry
devices that sense air pollution. However, this is an application-
specific system, which uses custom node management software
that does not offer any experimentation support to third parties.
Another difference with NITOS BikesNet is that the routes

and time schedules of the mobile sensor nodes are known in
advance. Previous work on the integration of OMF with sensor
resources to implement structural health monitoring of bridges
[12], [13] extended the framework to support the control of
fixed nodes. Unfortunately, it seems that this activity is not
continued in the latest release of OMF. Also, this work did not
aim to support an asynchronous and disconnected operation of
OMF with mobile sensor nodes, as this is the case with NITOS
BikesNet.

Smartphone-based sensing platforms: A lot of work has
been done on mobile sensing platforms based on smartphones.
Code-In-The-Air (CITA) [14] allows the user to write sensing
tasks for his smartphone in the form of high-level scripts.
These are compiled into a server-side and a mobile part,
with the latter being shipped and executed on the user’s
phone. The interaction between the server and the phone is
based on an asynchronous messaging service. The Mobile
Sensor Data Engine (MOSDEN) [15] is a remote sensing
framework for smartphones. It uses the concept of plug-ins to
enable a flexible integration of on-board and external sensors
without recompiling and/or redeploying the system. MOSDEN
implements generic sensing and data storage functions directly
on the smartphone, letting each device act as a server that
can be used by several applications. With EasyHarvest [16],
the user uploads sensing tasks written in Java on a server,
which distributes them on smartphones and collects the data
produced, in a transparent way. Smartphone owners control the
execution of sensing tasks on their devices through a single
interface, without having to repeatedly download, install and
configure individual sensing applications. Like MODSEN and
EasyHarvest, NITOS BikesNet is designed to engage a large
number of mobile devices and can thus support city-scale
sensing scenarios. While our platform does not support the
shipment of application code to the mobile devices, as CITA
and EasyHarvest, it lets the user remotely configure their op-
eration. Also, the fact that NITOS BikesNet is integrated with
OMF/OML simplifies the organization, controlled execution
and monitoring of experiments that involve selected or all
mobile sensor nodes.

III. REQUIREMENTS AND IMPLEMENTATION CHOICES

The goal of our work is to provide a platform for easy
experimentation and prototyping with mobile sensor nodes
mounted on bicycles. We envision a testbed that is open
for third parties to test mobile crowdsensing ideas, methods
and protocols, under real-world conditions and at city-scale.
We also place great emphasis in using low-cost and energy-
efficient nodes that can be easily adapted to support different
sensing scenarios. Below, we list the most important require-
ments which we believe such a platform should satisfy, along
with the choices we made for NITOS BikesNet.

Experimentation capability: The user should be able
to plan, execute, monitor and control an experiment, from
a remote location. This includes the reservation of (perhaps
specific) mobile sensor nodes for a timespan, the parameter-
ization of the sensing task, as well as the ability to record,
retrieve, analyze and visualize the measurements taken. NITOS
BikesNet builds on top of the OMF/OML framework, which
is widely used to manage experiments on top of different
networking testbeds all over the world. It also provides easy-
to-use data visualization tools.



Remote configuration: The sensor node should work right
out of the box, without the bicycle owner having to configure
it in any way. The setting of the configuration parameters that
drive the operation of the mobile sensor node should be done
in a transparent fashion, without requiring physical access.
NITOS BikesNet lets the user configure the mobile nodes
according to the needs of the experiment, via OMF commands,
at any point in time (also during the experiment).

Disconnected operation: The sensor node mounted on
the bicycle is unlikely to have constant or reliable network
connectivity. On the contrary, its connection to the Internet will
most likely be sporadic and short-lived, e.g. via the open access
points encountered in the city. NITOS BikesNet employs
delay-tolerant communication techniques to let the transfer of
commands (to nodes) and measurements (from nodes) occur
in an incremental and asynchronous way, whenever nodes
connect to the server.

Support for different networking technologies: WiFi is
currently the most popular choice for ad-hoc wireless network-
ing in a city, due to the abundance of open access points. Still,
it is desirable to let researchers experiment with different net-
working technologies, either for the communication between
the sensor node with the server, or between nodes themselves
in the spirit of vehicle-to-vehicle communications. The NITOS
BikesNet sensor node is designed to enable simultaneous usage
of two separate network interfaces. Currently these can be
either WiFi or ZigBee (the respective hardware modules can be
plugged/unplugged, at will); we also provide a custom ZigBee
access point through which nodes can connect to the Internet.
Other technologies, such as Bluetooth and Cellular, could be
supported in a similar way; this is future work.

Low-cost: The cost of the sensor node is crucial, especially
if one targets large-scale deployments. Also, having low-cost
nodes significantly simplifies their replacement, e.g., in case
they brake (due to abrupt shocks/falls of the bicycle), or get
stolen (if people forget to remove them when leaving their
bicycle unattended). NITOS BikesNet employs a custom-build
sensor node that costs less than e100 in total. The cost could
drop further, if one decides to go for a mass production. Also,
the installation of nodes on bicycles does not require any
technical skills and has zero cost.

Low-power: The mobile sensor node should be able to
operate for a longer period of time on batteries. Asking the
bicycle owner to recharge the node once a day or change
batteries every week, could already be quite annoying. This is
even more so if people are supposed to be part of the platform
for a long period (e.g., a year). The NITOS BikesNet node is
lightweight, using components with low-power characteristics
and sleep modes; it is also possible to completely power-off
individual components. Currently, without any fancy optimiza-
tions, and under reasonable assumptions, our sensor node can
operate autonomously for about a month.

Small size: The mobile sensor node should be small in
order to be easily mounted on the bicycle without blocking
the cyclists’ moves. The NITOS BikesNet node is designed to
fit underneath the bike saddle, where it is also well-protected
against falls and weather conditions (rain). It can be attached
to and detached from a bicycle in a few seconds.

Extensibility: It is impossible for a single device to in-
corporate all the sensors that could be required by different

experiments. Ideally, the sensor node should be extensible,
making it possible to add new sensors that are not available
in the standard package. The NITOS BikesNet node is built in
a modular way, so that existing sensors can be replaced with
new ones, almost in a plug-and-play fashion. The same applies
for the device firmware, which can be augmented with the
appropriate device drivers. However, the respective effort and
financial costs would have to be covered by the experimenter
or some source of funding.

In the next section, we discuss the NITOS BikesNet plat-
form in more detail, focusing on our mobile sensor node pro-
totype and the extensions made to the OMF/OML framework
in order to support disconnected operation and opportunistic
connectivity of the sensor nodes via WiFi and ZigBee.

IV. NITOS BIKESNET PLATFORM

The NITOS Future Internet (FI) experimental facility [17]
is one of the FIRE infrastructures, which is continuously
evolving through major extensions reflecting the latest tech-
nologies and trends in the FI ecosystem. Currently, NITOS
offers several testbed facilities to the research community,
featuring technologies in several different areas, such as wire-
less networks (WiFi, WiMAX and LTE), wired networks,
opportunistic networks, software-defined radios and networks,
Internet of Things (IoT) and smart city infrastructures. NITOS
is open and remotely accessible to any researcher who wishes
to deploy and experimentally evaluate networking protocols
and applications in real world settings. Users can reserve and
control the respective testbed resources through the NITOS
scheduler [18], which works in conjunction with the OMF
management framework.

A. Overview of the OMF/OML framework
The control and management of the NITOS facility is done

using the OMF open-source software. OMF was originally
created in the Orbit [19] testbed, and soon became the most
widely used tool for experiment control among the majority
of the testbeds worldwide. Notably, OMF is the primary
experiment control tool in the FIRE initiative [10] as well as
in GENI [20].

In particular, OMF enables the experimenter to automate
an experiment instead of setting up everything manually by
logging into each node to configure/control its operation.
The concept is similar to network simulators where the user
describes a topology along with the applications that run during
the simulation. The difference is that the topology consists of
physical nodes on which OMF runs applications like a traffic
generator. Also, the measurements are automatically collected
with the help of the OML. The configuration and control of
node operation occurs through specific properties, which are
part of “formal” resource descriptions, and can be done not
only at experiment setup but also during experiment runtime.

The basic components of the OMF framework are the
Experiment Controller (EC) and the Resource Controllers
(RCs). The role of the EC is to orchestrate the execution
of the experiments, written in the OMF Experiment De-
scription Language (OEDL). The EC interprets OEDL and
sends appropriate messages to the corresponding RCs. In turn,
each RC is responsible for abstracting and controlling one
or more underlying physical or logical resources. It basically
converts the messages received from the EC into resource-



Fig. 1: NITOS BikesNet architecture.

specific commands, and relays the response back to the EC.
It is important to note that the message exchange between
the EC and the RCs is performed using a publish-subscribe
mechanism, assuming a stable and reliable communication.
Thus, in case of network problems, the messages published
by the EC and/or the RC are dropped.

Finally, the measurements produced by an experiment are
stored by the respective RCs directly on an OML server, with-
out any involvement of the EC. Given that several experiments
can run at the same time, a separate database is maintained for
each experiment. The user can inspect and retrieve the results
of his experiment at any point in time.

B. NITOS BikesNet architecture
The NITOS BikesNet platform consists of three distinct

physical entities: the server, gateways and mobile sensor
nodes. The NITOS server runs an instance of the OMF/OML
framework, appropriately extended to handle node mobility
(see next). Gateways provide wireless Internet connectivity to
the sensor nodes. They are placed/fixed at different areas of
the city and have a backbone connection to the public Internet.
There are currently two gateway types: WiFi access points /
routers, and custom-made NITOS ZigBee access points. WiFi
is a widely adopted standard with numerous APs available
in every city, while ZigBee has a lower power consumption
and thus could be an interesting alternative to explore for
nodes that run on batteries; also, ZigBee operates at several
different frequencies and can avoid the interference in the
2.4GHz unlicensed band induced by WiFi networks. Finally,
NITOS mobile sensor nodes are mounted on the bicycles of
volunteer participants. They are implemented using a self-
designed embedded device and custom firmware that controls
the onboard sensors, logs measurements on stable storage and
manages the communication with the server, via the gateways.
Fig. 1 illustrates the system architecture.

To deal with the intermittent connectivity and disconnected
operation of mobile sensor nodes, NITOS BikesNet employs a

custom-developed RC component, which performs the actual
communication with the nodes while hiding any disconnec-
tions from the rest of the NITOS platform; as before, the RC
itself has a stable connection to the EC and OML components.
More specifically, in addition to conventional (synchronous)
commands, the RC supports so-called asynchronous com-
mands. A conventional command succeeds only if the node
to which it is addressed is available (currently connected to
the server through a gateway), else it fails; this corresponds
to the usual operation of the RC. In contrast, an asynchronous
command is deferred if the corresponding node is not available;
it is queued within the RC, and is forwarded to the node as
soon as it becomes available. Asynchronous commands can
be associated with an expiration time, after which they are
dropped from the queue; they are also removed from the queue
if in the meantime the user issues a new, competing command
that effectively cancels them. Along the same lines, when a
mobile sensor node becomes available, the RC retrieves its
measurements and forwards them to an OML collection point.

While the user can address/control each mobile node sepa-
rately, for practical reasons, we interface all nodes via a single
RC, which is responsible for keeping track of their status. This
way, a single endpoint address needs to be reserved at the NI-
TOS server, and all nodes can be pre-configured with it. Also,
the EC can control several nodes via a single command to the
RC, which can fan-out this command to several or all nodes.
Furthermore, having only one RC conserves resources on the
server without incurring significant service delays; provided
that the nodes contact the server at different intervals and stay
connected for a relatively short duration (which is a reasonable
assumption in our case). This said, our implementation can
be modified in a straightforward way to let nodes connect to
different RCs for better scalability.

The internals of the RC and its interaction with the other
components of the NITOS platform are shown in Fig. 2. The
RC includes handlers for managing the connections with the



Fig. 2: Resource Controller architecture.

mobile sensor nodes, processing the control messages coming
from the EC, and processing the measurements coming from
the nodes. The connection handler is responsible for keeping
track of the online status of the nodes, and for forwarding
messages and results between the nodes and the other two
handlers. The message handler basically keeps a separate
queue for each node, where incoming commands are stored
when the node is disconnected. Similarly, the result handler
maintains a separate queue for each experiment, where it places
the respective measurements received from each node, in order
for them to be forwarded to the proper OML collection point.

C. Sensor node protocol
The high-level protocol between a mobile sensor node and

the RC is outlined in Table I. The conversation is initiated by
the node, which announces itself to the RC via a “HELLO”
message. Conversely, it sends a“BYE” message when it intends
to end the conversation; there is no negotiation here, as
the node unilaterally decides to sign-off. But note that the
conversation may also end abruptly, without the node sending
a “BYE” message. The transfer of commands to the node and
measurements/results to the RC is done via the “CMD” and
“RSLT” transaction, respectively. In both cases, the other side
must confirm the receipt and successful handling of the mes-
sage via an acknowledgment (“CMDACK” or “RSLTACK”),
else the transaction will be considered as failed and the mes-
sage will be eventually retransmitted. All protocol messages
carry the node identifier in order for the RC to associate them
with the corresponding internal data structures. In addition,
command/result messages and the respective acknowledgments
carry sequence numbers for association and duplicate detection
purposes.

Our current implementation uses TCP/IP as the underlying
transport service, because of its support for reliable com-
munication, flow-control and full-duplex bi-directional data
transfers. Mobile nodes are pre-configured with the IP address
and TCP port number of the RC (which runs on a publicly
accessible machine with a static address). Nodes connect
to the RC when they encounter a gateway and have not
communicated with the RC for some time. The connection
may remain open for a longer period, in which case the node
receives the new commands from the RC as soon as these are
issued from the user, and sends new measurements to the RC as
soon as these are performed. A node will close the connection
when all measurements have been successfully transferred to

Direction :: Message Comments

N → RC :: <node id>:HELLO

Node announces its availability. The RC should
update the node status internally. Initiate trans-
mission of pending commands from the RC to the
node, as well as transmission of pending results
from the node to the RC.

RC → N :: <node id>:CMD:<seq. #>:<payload>
N → RC :: <node id>:CMDACK:<seq. #>

RC sends the next pending command, and waits
for an acknowledgment. Can be repeated several
times.

N → RC :: <node id>:RSLT:<seq. #>:<payload>
RC → N :: <node id>:RSLTACK:<seq. #>

Node sends next batch of results to the RC,
and waits for acknowledgment. Can be repeated
several times.

N → RC :: <node id>:BYE
Node informs that it will sign off and become
unavailable. The RC should update the node status
internally.

TABLE I: Messaging protocol for the communication
between the resource controller (RC) and the node (N).

the RC, and it has not received a new command from the RC
for some time. Of course, the connection can brake at any
point in time during the above transfers, as nodes may shut
down, reboot, or go out of range of the gateway.

Note that the protocol does not make any strong assump-
tions about the underlying transport. Thus it can be applied,
virtually unchanged, on top of different transports besides
TCP/IP. In fact, we exploit the “portable” nature of the protocol
in how we interface the mobile sensor nodes to the RC via
ZigBee, as will be discussed in the sequel.

D. Developed hardware and firmware
The NITOS BikesNet sensor node, depicted in Fig. 3(a), is

built by combining different hardware components to create a
unified solution that meets the requirements stated in Section
III. Our prototype is based on an Arduino-like board and
several Arduino compatible modules. We chose the Arduino
platform [21] because of its open approach, great flexibility
and the large number of publicly available hardware modules
and software libraries. In the following, we briefly describe the
components of the node and explain how they contribute to the
overall node functionality. A high-level component diagram of
the sensor node is shown in Fig. 3(b). We also discuss the node
firmware and the custom-built ZigBee gateway.

Teensy microcontroller board: The main module of the
node is a Teensy 3.0 development board [22], which features a
32-bit ARM Cortex-M4 microprocessor with 128KB of flash
(program space) and 2KB of EEPROM (long-term storage)
memory. The board also has 34 digital I/O pins (14 of those can
be configured as analog ones) and 3 UART ports. It operates
at 3.3V, while the microprocessor can be configured to run at
96MHz, 48MHz, 24MHz or 2MHz. The latter frequency can
be used during idle periods where high-processing capabilities
are not required, to save energy. Furthermore, Teensy can be
put in sleep mode to minimize power consumption. Notably,
Teensy is fully compatible with Arduino software, and it can
be programmed using the same tools.

Wireless interfaces: In order to give the node sufficient
flexibility in terms of networking, it has two sockets for
plugging-in communication modules. These are connected to
the Teensy via two different UART ports. Each interface has
separate hardware connections that are used to control the
power state (put the modules in sleep mode) and to monitor
the association status of the respective network interface.

We currently employ two modules that support different
popular wireless standards: the Xbee Series 2 module [23], and
the WiFly RN-171 module [24]. The Xbee module implements
the ZigBee protocol on top of 802.15.4 in the ISM 2.4GHz



(a) Mobile sensor node (b) Component diagram (c) ZigBee gateway

Fig. 3: Custom-built hardware of the NITOS BikesNet platform

band. The WiFly module implements the 802.11 b/g radio
protocol and is compatible with commercial WiFi access
points. Furthermore, it incorporates a full TCP/IP stack that
can be invoked by the microcontroller of the Teensy. Both
modules operate at 3.3V, thus allowing communication with
Teensy without requiring an extra hardware component for
logical level conversion. They also support a “command”
mode, thereby allowing the Teensy to configure and control
their operation in a straightforward way.

In our current implementation, the Xbee is used to as-
sociate with ZigBee gateways through which the node can
communicate with the RC. Of course, the WiFly also serves
this purpose. In addition, it can be used as a sensor, to scan
available WiFi networks. Different node configurations are
possible. For instance, one may have a WiFly module acting
as a network sensor, and an Xbee module or a second WiFly
module for the communication with the RC. Alternatively, the
node may feature just a WiFly module that can provide both
functions, driven by the Teensy as needed.

Sensors: The node is equipped with a GPS unit and
temperature, humidity and light-intensity sensors. All modules
operate at 3.3V, so they can be directly connected to Teensy.
In addition, all modules are powered through an individual
I/O pin of Teensy, so that Teensy can turn them off for power
saving.

The GPS is a D2523T receiver [25] that provides geo-
positioning as well as ground speed and altitude. It also
provides exact time/date information, which in turn can be
used to timestamp measurements in a globally consistent way.
The GPS is interfaced with Teensy through a UART port,
and is driven via the tinyGPS Arduino library. Teensy can
dynamically turn the GPS on/off to save power.

The air temperature and humidity is measured via a sht11
digital sensor [26], connected to Teensy over a 2-wire interface.
The sensor is driven using the sensirion Arduino library.
Finally, a photocell sensor that consists of a light-dependent
resistor is interfaced with one of Teensy’s analog I/O pins,
along with an electrical resistor forming a voltage divider
circuit. To acquire luminosity measurements Teensy performs
an analog to digital conversion, estimates the voltage drop
across the photocell and translates the obtained value into a
light intensity value.

microSD: The node also features a microSD slot connected
to Teensy via the SPI bus. The attached card is powered
through an I/O pin of the Teensy, thus it can be turned off as
the aforementioned sensor modules. The microSD is used to

persistently log sensor measurements, until they are uploaded
to the RC. This way the node is able to collect a large
amount of data without having network connectivity to the RC.
Moreover, the node can be put in sleep mode or be completely
turned-off without data loss, which is of crucial importance in
order to achieve good autonomous operation on batteries. It
also ensures that measurements will not be lost in case the
node resets/reboots or runs out of batteries.

Wake-on-shake: The Wake-on-Shake (WoS) [27] com-
bines a low-power microcontroller with the ADXL362 ac-
celerometer and has extremely low power consumption. It
provides an analog pin that is activated in case of an abrupt
shake (strong acceleration). We use WoS to awake Teensy as
soon as the mobile node starts moving, in order to initiate
the sensor measurement process. To achieve this, the analog
pin of WoS is connected to an interrupt pin of the Teensy
that is pre-configured to awake Teensy in case of sensing a
“HIGH” signal. Note that the Teensy cannot acquire vibration
measurements by itself when in sleep mode.

Firmware: The firmware of the NITOS BikesNet sensor
node controls the entire operation of the device, e.g., it con-
figures and controls the peripheral modules, performs sensing
tasks, logs the respective measurements, implements power
management, etc. The software is custom-developed but also
relies on several open-source Arduino libraries, mainly for
controlling the peripherals.

In a nutshell, as long as the node is moving, the Teensy
periodically executes a full measurement cycle. If the node
stays immobile for a longer period of time, Teensy puts itself
and the wireless interfaces in sleep mode while it completely
turns off the rest peripherals apart from the WoS. Normal
operation is resumed when Teensy is woken up by WoS. Note
that this approach is quite meaningful, as it is typically not
useful to take many samples at exactly the same location. More
importantly, the node remains asleep when it is not moving,
which we expect to be the case most of the time (a bicycle is
typically used only for short periods during the day). Of course,
it is possible to implement more refined/clever policies, which
we plan to do in the future.

To use the WiFly as a sensor (for detecting the WiFi
networks in range), it is put in command mode and is instructed
to perform a scan operation. When the scan is completed, the
WiFly responds with the list of available networks. When using
a network module (WiFly or ZigBee) as a communication
channel, the firmware monitors the association pin to detect
that a connection to a gateway has been established. Then, it



Fig. 4: NITOS mobile sensor node mounted on bicycle

initiates a conversation with the RC (as described previously).
To save power, this is done only if the node has some
measurements to upload and it has not already contacted the
RC recently, else the module used for communication is put
in sleep mode.

As said, the Xbee module is used exclusively for the
purpose of communicating with the RC (via a NITOS ZigBee
gateway). But unlike WiFly, Xbee does not come with built-
in support for TCP/IP. Fortunately, the firmware can talk the
same high-level protocol on top of the Xbee application-
level transport service; in turn, the ZigBee gateway acts as
a proxy for the node over a TCP connection to the RC.
On the other hand, an alternative option would have been
to use an IP stack for resource-constrained devices, such as
6LoWPAN [28], which allows IPv6 packets to be sent and
received over IEEE 802.15.4 networks. However, this would
require additional development effort and would substantially
increase the complexity of the firmware without providing any
extra functionality in our framework.

The association with NITOS ZigBee gateways is done
using a pre-configured PAN id, stored in the node’s EEPROM.
This can be done because all ZigBee gateways are part of
our testbed. For WiFi, we obviously want the node to exploit
third-party access points that are available all over the city. To
this end, the firmware maintains in EEPROM a list of known
APs along with the respective passwords. Like other node
configuration parameters, this information can be remotely
updated by issuing corresponding control commands via the
EC/RC.

ZigBee gateway: As already mentioned, we want a mobile
node to be able to communicate with the RC not only via
WiFi but also via ZigBee. The respective gateway, illustrated
in Fig. 3(c), is custom built for this purpose. It is based on an
Arduino Ethernet board, on top of which we mount a custom
shield with an Xbee module. The Ethernet is connected to a
backbone network through which the RC can be reached. The
Xbee is configured as a coordinator for a given PAN id. We do
not currently use the security support of XBee, but this could
be easily done, if required, in the future.

When a node associates with the ZigBee network of the
gateway, the gateway initiates a TCP connection to the RC
on behalf of the node. From that point onwards, the gateway
receives (over the Xbee transport) the protocol messages sent
by the node, and forwards them (over TCP/IP) to the RC. The
same is done for the messages flowing in the other direction.
When the association is lost, the gateway sends a “BYE”
message on behalf of the node to the RC, and closes the
TCP/IP connection. This proxying is transparent for the RC,
which handles all TCP connections (whether through WiFly
or the ZigBee gateway) in the same way.

Fig. 5: Measurement points with details.

Note that in principle the NITOS ZigBee gateway could
use a single TCP/IP connection for all nodes; de-multiplexing
is possible since each protocol message carries the node id.
However, this would be meaningful only if a large number of
nodes were likely to use a gateway simultaneously, which is
currently not the case in our deployment (we have deployed
the NITOS mobile sensor node on just a few bicycles).

E. Installation of the NITOS sensor node
The sensor node, enclosed in a waterproof case, is attached

to the bicycle using tire-ups. The antenna for the WiFi radio is
fixed beneath the saddle, and is connected via a pigtail to the
WiFly interface of the node. Finally, the GPS unit is placed
on the handlebar of the bicycle in order to have good signal
reception. Fig. 4 illustrates the complete setup on one of our
bicycles. Note that the most expensive parts, i.e., the node and
the GPS, can be effortlessly mounted and unmounted, in a few
seconds. This is important since the process may have to be
repeated several times during the day, whenever leaving the
bicycle unattended.

F. Visualization tools
Researchers typically need to visualize and analyze large

data sets collected from their experiments, in an easy and
flexible way. To this end, we have developed tools that can
be used to display measurements as well as to perform differ-
ent filtering and aggregation operations. This functionality is
provided through the NITOS portal [29] using Google Maps
[30]. Behind the scenes, we provide a mechanism that retrieves
raw measurements from the corresponding experiment OML
database, and performs the necessary pre-processing before
feeding data into the map.

Specifically, the user can select for display specific data
sets from those that were produced by the experiment, or
view all collected measurements at once. He can also filter
measurements based on their values and attributes (WiFi
networks, environmental parameters, GPS coordinates, etc.),
for instance to consider only the measurements taken in a
specific region, or to omit measurements that do not satisfy a
property of interest. Moreover, in case of large data sets where
it is likely to have several measurements at adjacent locations,
one can merge measurements that lie within the same area



Teensy Sht11 Analog SD_R SD_W WoS Xbee WiFly GPS
0

20

40

60

80

100

120
C

u
rr

e
n

t 
D

ra
w

 (
m

il
li

A
m

p
e

re
)

Device Modules

(a) Active state

Teensy WoS Xbee WiFly
0

50

100

150

200

250

C
u

rr
e
n

t 
D

ra
w

 (
m

ic
ro

A
m

p
e
re

)

Device Modules

(b) Sleep state (c) Real-time footprint of different components

Fig. 6: Power consumption of the NITOS mobile sensor node

into a single data point by supplying the aggregation radius.
The maps are interactive, allowing the user to retrieve all the
details of a specific data point just by clicking on it, as can
be seen in Fig. 5. Of course, the user always has the option
to retrieve the raw measurements from the OML database in
order to perform his own data processing and visualization.

V. PERFORMANCE OF THE MOBILE SENSOR NODE

This section analyzes the performance of the NITOS mo-
bile sensor node in terms of sensing latency, communication
capability and power consumption. These performance figures
give an idea about the potential as well as the limitations of
our prototype, and can be used to guide the development of
enhanced versions.

A. Sensing latency
We have performed several tests in order to measure the

latency of each sensor used in our node prototype. The results
presented next were derived after repeating each measurement
a number of times to eliminate random effects and short-term
fluctuations.

Data acquisition from the sht11 sensor requires 319 ms,
while 230 µs are needed to perform five consecutive readings
of the photo cell (the effective luminosity level is computed as
the average of these values). The time for receiving GPS data
over UART is 2 ms. Also, it takes about 3180 ms to invoke the
WiFi scan procedure and collect the results; this time can vary
depending on the number of the discovered networks due to the
limited bitrate of the UART port to WiFly. The time required to
store all the above measurements (with 10 WiFi access points
being detected) in the microSD card is approximately 13 ms.
In total, the time required to perform a full sense-and-log cycle
is roughly 3514 ms. Hence the minimum sensing period, when
using all onboard sensors, is about 4 seconds (the node can
perform up to 15 full sensing cycles a minute)..

B. Connectivity & transmission latency
An important performance factor is the time required to

connect to a gateway, and the data transfer rate that can be
achieved, using a given networking technology. For Xbee, we
measured a network association delay of roughly 7 seconds,
whereas for WiFly the delay typically varies between 2 and 4
seconds. The rate at which data can be uploaded to server (RC)
depends not only on the nominal bandwidth of the networking
technology but also on the bitrate supported by the UART
ports and the networking modules of the sensor node. More
specifically, while the Xbee module has a physical rate of 250
Kbps, it only supports a maximum UART baud rate of 57600,

which results in an effective throughput of about 46 Kbps.
The WiFly module, which has a nominal physical rate of 464
Kbps and supports a much higher baud rate of 460800 over
the UART, achieves a throughput of 358 Kbps.

To get a practical feeling of these numbers, let us assume
the mobile sensor node has collected 100 measurements from
all onboard sensors; with continuous operation and a sensing
period of 10 seconds, the node would take roughly 16-17
minutes to collect these measurements. The total data size is
about 91 KBytes. The time needed to upload this data on the
NITOS server is close to 16 seconds over Xbee, and only
about 2 seconds over WiFly. Also, if one takes into account
the respective network association delays, the total amount of
time for completing the data transfer is roughly 23 seconds
and 6 seconds for Xbee and WiFly, respectively. Note that
the delay for WiFly is quite acceptable, even for performing
data upload on the move, since bicycles do not move very fast
in a city and thus are likely to remain in range of an access
point for some time. Clearly, this is not the case for Xbee.
However, the NITOS ZigBee gateways are installed only at our
office building and a few homes, where bicycles typically stay
for hours, giving nodes more than enough time to upload the
data collected. We are currently considering different options
to achieve better upload performance, e.g., by employing the
modern Digi S6B WiFi module [31], which nominally supports
a rate of 1Mbps over UART and up to 6 Mbps over SPI.

C. Power consumption
To measure the instantaneous power consumption of the

components used in our prototype device, we follow a widely
adopted measurement methodology whereby a high-precision,
low impedance current-shunt resistor is placed in series with
the power source and the power supply pin of the component
to be measured. We use custom-built hardware developed
in previous work [32], which enables online and accurate
monitoring of the voltage drop across the resistor at the high
sampling rate of 63 KHz via the prototype NITOS ACM card.

The current draw of the components used in the NITOS
mobile sensor node, when in active mode, is shown in Fig.
6(a). As expected, the most expensive ones are the GPS and
the two wireless modules. We note that the acquisition of
temperature, humidity and luminosity measurements as well as
the microSD operations are performed once per sensing period
and last only for a short period of time. This implies that their
power consumption does not highly affect the node’s average
power consumption expenditure. Fig. 6(b) shows the current
draw of the components that can be put in sleep mode, when
in this state: roughly 220 µA for Teensy, 2.35 µA for WoS, 10



(a) Data collected from each bicycle. (b) Aggregated results from all bicycles. (c) Open/secured WiFi networks discovered.

Fig. 7: Visualization of the WiFi discovery experiment results

µA for Xbee and 4 µA for WiFly. The difference compared to
the active mode is huge (µA vs. mA). This clearly indicates
that significant energy savings can be achieved by putting these
components in sleep mode as often as possible.

Finally, Fig. 6(c) plots the current draw of the sensor node
while various components are activated to perform typical
sensing, storage and data transmission tasks (in this case, the
node communicates with the RC via Xbee). We note that (for
visualization purposes) the footprints shown here correspond
to an artificially prolonged operation of the respective com-
ponents, not to a typical sensing cycle. Based on repeated
measurements in active mode (when the bicycle is moving),
involving all the onboard sensors and with a sensing/logging
period of 10 seconds, we estimate that the device drains 256
mA on average. When put to sleep (the bicycle does not move)
the node requires negligible energy. We have equipped the
node with 3 type AAA batteries giving a total capacity of 6600
mAh in order to achieve more than 25 hours of continuous
operation. Assuming a bicycle is on the move for less than
40 minutes a day, this results in a lifetime of one month; after
that, the bicycle owner has to change the batteries of the node.

VI. A USE CASE / EXPERIMENTATION SCENARIO

For the time being, we have deployed NITOS mobile sensor
nodes on a few bicycles that belong to members of NITlab
[33], who volunteered to try out the NITOS BikesNet platform.
We have performed a number of small experiments to test and
debug the system. Here, we briefly report on one of those
experiments.

The objective of this particular use case is to discover and
report the available WiFi networks in the city of Volos. In this
case, we employed four bicycles. Each cyclist was instructed to
follow a different route (the routes where partly overlapping).
The sensor nodes on the bicycles were equipped with a WiFly
module used to sense WiFi networks, and an Xbee module for
the communication with the RC. Via OMF, the nodes were
configured to perform a sensing operation every 5 seconds (as
long as they were moving). The collected measurements were
uploaded to the NITOS server at the end of the route, via a
ZigBee gateway.

Fig. 7(a) depicts the individual measurements collected
by each bicycle. All data points on the map are clickable
and a pop-up box appears containing information concerning
the nearby WiFi networks. An aggregated view of this data
is shown in Fig. 7(b), where adjacent measurements from

Bike id Samples Duration Distance Avg. speed Data Size
1 136 11’:15” 3.7 Km 19.7 Km/h 106 kB
2 82 6’:46” 1.7 Km 15.1 Km/h 67,7 kB
3 127 10’:28” 3 Km 17.2 Km/h 97,9 kB
4 102 8’:25” 2.2 Km 15.7 Km/h 84,7 kB

TABLE II: Statistics of the WiFi-scan experiment.
different bicycles are merged into a single data point in the
map. Finally, Fig. 7(c) shows the result of filtering this data
in order to distinguish between open and secured networks.

Table II lists, for each bicycle, the number of samples
collected, the duration of the course, the distance covered,
the average speed and the total amount of data generated
(all sensors were active during the experiment, not just the
WiFi sensor). Based on these numbers, one can estimate that
the mobile nodes took a measurement every 20-27 meters,
and generated data at rates between 1,28 and 1,36 Kbps. By
extrapolating these results, one can also estimate that after one
hour of biking (with the same sensing frequency as before)
each node would produce about 612 kB of data. Uploading
this data on the server via a ZigBee gateway would then take
a bit less than 2 minutes. This shows that our platform can
support high-frequency and long-term sensing tasks, without
the respective data uploads being prohibitively expensive.

VII. CONCLUSION AND FUTURE WORK

We presented the NITOS BikesNet platform, which can
be used to realize a city-scale mobile sensor testbed, based
on nodes that are mounted on bicycles. The experimenter
can control these nodes via the OMF/OML framework, in a
convenient way. Such a testbed could stimulate research and
service provisioning in the areas of mobile ad-hoc sensing,
participatory and crowdsensing applications. We also believe
that our work can provide valuable insights to researchers
working in similar testbed platforms.

Our future plans include the extension of the NITOS sensor
node to support additional types of sensors, e.g., for measuring
noise, air pollution, and performing spectral scans of the
wireless bands. We also wish to test alternative wireless access
technologies for the communication between the mobile nodes
and the NITOS server, such as Cellular or Bluetooth, as well as
to investigate combined usage scenarios. Another item of high
importance is the implementation and evaluation of smarter
power management policies at the firmware level, to further
increase the autonomy of the mobile nodes.

We are also interested in exploring the co-existence of the



NITOS mobile sensor node with the smartphones of bicycle
owners [34]. The latter could play the role of a gateway
to be used for urgent interactions with the NITOS server,
e.g., high-priority commands or crucial event notifications.
It would also be possible to exploit the smartphone’s GPS
and accelerometers, as well as its extremely powerful CPU to
offload heavyweight processing tasks.

Finally, we are considering more application scenarios that
could be supported using our platform, like environmental
monitoring, the detection of potholes on roads, or even infer-
ring traffic jams to propose alternative routes. We also intend
to make the NITOS BikesNet platform known to the wider
community of Volos, in order to attract volunteer cyclists
outside the University microcosm but also to inspire people
to come up with their own application ideas.

VIII. ACKNOWLEDGEMENTS

The authors acknowledge the support of the European
Commission through STREP project REDUCTION (FP7-
288254) and IP project EINS (FP7-288021). Moreover, the
authors would like to thank NITlab members for their valuable
help during the use case realization.

REFERENCES
[1] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,

and M. B. Srivastava, “Participatory sensing,” in Proc. 1st ACM Work-
shop on World-Sensor-Web: Mobile Device Centric Sensory Networks
and Applications (WSW), 4th ACM Conf on Embedded Networked
Sensor Systems (SenSys), 2006.

[2] T. Rakotoarivelo, G. Jourjon, and M. Ott, “Designing and orchestrating
reproducible experiments on federated networking testbeds,” Computer
Networks, Elsevier, vol. 63, 2014.

[3] O. Mehani, G. Jourjon, T. Rakotoarivelo, and M. Ott, “An instrumen-
tation framework for the critical task of measurement collection in the
future internet,” Computer Networks, Elsevier, vol. 63, 2014.

[4] D. Stavropoulos, G. Kazdaridis, T. Korakis, D. Katsaros, and L. Tassiu-
las, “Demonstration of a vehicle-to-infrastructure (v2i) communication
network featuring heterogeneous sensors and delay tolerant network
capabilities.” in Proc. 8th Intl ICST Conf on Testbeds and Research
Infrastructure. Development of Networks and Communities (TRIDENT-
COM), 2012.

[5] V. Maglogiannis, G. Kazdaridis, D. Stavropoulos, T. Korakis, and
L. Tassiulas, “Enabling mobile sensing through a dtn framework,” in
Proc. 8th ACM Intl workshop on Wireless Network Testbeds, Experi-
mental Evaluation and Characterization (WiNTECH), 2013.

[6] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “Bikenet: A mobile sensing system for cyclist
experience mapping,” ACM Transactions on Sensor Networks (TOSN),
vol. 6, no. 1, 2009.

[7] S. Reddy, K. Shilton, G. Denisov, C. Cenizal, D. Estrin, and M. Srivas-
tava, “Biketastic: sensing and mapping for better biking,” in Proc. 28th
ACM SIGCHI Conf on Human Factors in Computing Systems, 2010.

[8] L. Sanchez, V. Gutierrez, J. A. Galache, P. Sotres, J. R. Santana,
J. Casanueva, and L. Munoz, “Smartsantander: Experimentation and
service provision in the smart city,” in Proc. 16th IEEE Intl Symposium
on Wireless Personal Multimedia Communications (WPMC), 2013.

[9] FP7-ICT-2007.1.6-224460. Project WISEBED. http://www.wisebed.eu.
[10] FIRE: Future Internet Research and Experimentation initiative official

website. [Online]. Available: http://www.ict-fire.eu/

[11] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele,
“Pushing the spatio-temporal resolution limit of urban air pollution
maps,” in Proc. 12th Intl Conf on Pervasive Computing and Communi-
cations (PerCom), 2014.

[12] Y. Tselishchev and A. Boulis, “Wireless sensor network tesbed for
structural health monitoring of bridges,” in Proc. 8th IEEE Conf
Sensors, 2009.

[13] A. Boulis, R. Berriman, S. Attar, and Y. Tselishchev, “A wireless sensor
network test-bed for structural health monitoring of bridges,” in Proc.
36th IEEE Conf on Local Computer Networks (LCN), 2011.

[14] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden,
“Code in the air: Simplifying sensing and coordination tasks on smart-
phones,” in Proc. 12th ACM Workshop on Mobile Computing Systems
& Applications (HotMobile), 2012.

[15] P. P. Jayaraman, C. Perera, D. Georgakopoulos, and A. Zaslavsky,
“Efcient opportunistic sensing using mobile collaborative platform
mosden,” in Proc. 9th IEEE Intl Conf on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 2013.

[16] M. Katsomallos and S. Lalis, “Easyharvest: Supporting the deployment
and management of sensing applications on smartphones,” in Proc. 1st
IEEE Workshop on Crowdsensing Methods, Techniques, and Applica-
tions (Crowdsensing), 12th IEEE Conf on Pervasive Computing and
Communications (PerCom), 2014.

[17] Network Implementation Testbed using Open Source platforms.
[Online]. Available: http://goo.gl/j67I6k

[18] A.-C. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, and M. Ott, “A new slicing scheme for efficient use of
wireless testbeds,” in Proc. 4th ACM Intl Workshop on Wireless Network
Testbeds, Experimental Evaluation and Characterization (WiNTECH),
2009.

[19] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network
protocols,” in Proc. 3rd IEEE Conf on Wireless Communications and
Networking (WCNC), 2005.

[20] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative
network experiments,” Computer Networks, Elsevier, vol. 63, 2014.

[21] Arduino platform. [Online]. Available: http://www.arduino.cc/
[22] Teensy 3.0 dev board. [Online]. Available: http://goo.gl/BMG4XM
[23] Xbee wireless module. [Online]. Available: http://www.digi.com/xbee/
[24] Wifly - rn-171xv 802.11 b/g. [Online]. Available: http://goo.gl/p7TCC5
[25] D2523T GPS Receiver. [Online]. Available: http://goo.gl/Nkw3b6
[26] SHT11 Temp & Hum Sensor. [Online]. Available: http://goo.gl/lnzf6N
[27] Wake-on-shake Board. [Online]. Available: http://goo.gl/4VwivR
[28] G. Mulligan, “The 6lowpan architecture,” in Proc. 4th ACM workshop

on Embedded networked sensors, 2007.
[29] NITOS visualization tool. [Online]. Available: http://goo.gl/cojA8x
[30] Google Maps API. [Online]. Available: http://goo.gl/aqsBzH
[31] Digi S6B WiFi Interface. [Online]. Available: http://goo.gl/YuT5Ta
[32] S. Keranidis, G. Kazdaridis, V. Passas, T. Korakis, I. Koutsopoulos,

and L. Tassiulas, “Online Energy Consumption Monitoring of Wireless
Testbed Infrastructure Through the NITOS EMF Framework,” in Proc.
8th ACM Intl Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization (WiNTECH), 2013.

[33] Network Implementation Testbed Laboratory. [Online]. Available:
http://nitlab.inf.uth.gr

[34] Z. Ruan, E.-H. Ngai, and J. Liu, “Wireless sensor network deployment
in mobile phones assisted environment,” in Proc. 18th Intl Workshop
on Quality of Service (IWQoS), 2010.


