
A Demonstration of the NITOS BikesNet Framework

Giannis Kazdaridis, Donatos Stavropoulos, Stavros Ioannidis,
Thanasis Korakis, Spyros Lalis and Leandros Tassiulas

Department of Electrical and Computer Engineering
University of Thessaly, Greece

Centre for Research and Technology Hellas, CERTH, Greece
Email: {iokazdarid, dostavro, iostiv, korakis, lalis, leandros}@uth.gr

Abstract—In this paper we present NITOS BikesNet, a frame-
work for mobile sensing in a city-wide environment offering
experimentation capabilities. More Specifically, we present a
custom-made and modular prototype device that can be easily
mounted on volunteers’ bicycles dedicated to collecting environ-
mental measurements and available WiFi networks. In addition,
we present our enhancements in OMF framework through which
we remotely control the operation of the developed devices,
whenever they experience back-end connection. Finally, we ana-
lyze an indicative demonstration experiment which illustrates the
capabilities of the developed framework.

I. INTRODUCTION

Smart and portable devices such as tablets, smart-phones
and other wearable devices have infiltrated in everyday life
forming a powerful tool that enables communication and
ubiquitous access in the information systems. Those devices
feature a high number of sensing modules that allow for
capturing real data as well as uploading and sharing them
with the interested parties. This type of community sensing
is widely known with the term of participatory sensing [1].

In this paper, we present the NITOS BikesNet framework,
which expands NITOS facility [2] capabilities, using sensor
nodes mounted on bicycles. Our platform is based on a
custom wireless embedded node that can host different types
of sensors. The sensor nodes are mounted on the bicycles
of ordinary people who go about their daily routine as
usual. The management of the sensor nodes and the data
produced by them is done via the cOntrol and Management
Framework (OMF) [3] and the OMF Measurement Library
(OML), respectively. Leveraging our previous experience in
delay tolerant networking (DTN) [4], [5], we extend OMF to
handle intermittent and disconnected operation due to mobility,
in a transparent fashion.

A similar work [6] to our implementation uses a variety
of sensing modules, which focuses on environmental as well
as cyclist’s performance/fitness measurements and is based
on several Moteiv Tmote Invent platforms. The platform is
modular and provides experience mapping, but is not designed
for allowing remote access and is not controlled by a widely
adopted framework. Moreover, the commercial devices used in
this platform do not offer flexibility in terms of customization,
whereas in our work we relied on open-source modules, which
allow fine-grained configuration. In the domain of Smart Cities
experimentation SmartSantander [7] constitutes an indicative
example, since it features experimentation on a smart city
infrastructure with fixed and mobile nodes. The provided
interface and tools are custom made for the purposes of Smart-
Santander and heavily rely on its architectural components.

This work is organized as follows. Section II presents the
overall architecture of the framework and Section III presents
an experimental demonstration scenario that showcases NITOS
BikesNet capabilities.

II. NITOS BIKESNET FRAMEWORK

The NITOS BikesNet Framework enables experimentation
in a mobile wireless sensing network consisting of sensing
devices mounted on bicycles. The deployment of the frame-
work was carried out as part of the NITOS infrastructure
and the management of the experimentation is handled by the
OMF framework which allows the experimenters to describe
their experiments in an event-driven way using a high-level
description language.

The basic components of the OMF framework are the
Experiment Controller (EC) and the Resource Controllers
(RCs). The role of the EC is to orchestrate the execution
of the experiments, written in the OMF Experiment De-
scription Language (OEDL). The EC interprets OEDL and
sends appropriate messages to the corresponding RCs. In turn,
each RC is responsible for abstracting and controlling one
or more underlying physical or logical resources. It basically
converts the messages received from the EC into resource-
specific commands, and relays the response back to the EC.
It is important to note that the message exchange between
the EC and the RCs is performed using a publish-subscribe
mechanism, assuming a stable and reliable communication.
Thus, in case of network problems, the messages published
by the EC and/or the RC are dropped.

A. Framework Architecture
The NITOS BikesNet platform consists of three distinct

physical entities: the server, gateways and mobile sensor
nodes. The NITOS server runs an instance of the OMF/OML
framework, appropriately extended to handle node mobility
(see next). Gateways provide wireless Internet connectivity to
the sensor nodes. They are placed/fixed at different areas of
the city and have a backbone connection to the public Internet.
There are currently two gateway types: WiFi access points /
routers, and custom-made NITOS ZigBee access points. WiFi
is a widely adopted standard with numerous APs available
in every city, while ZigBee has a lower power consumption
and thus could be an interesting alternative to explore for
nodes that run on batteries; also, ZigBee operates at several
different frequencies and can avoid the interference in the
2.4GHz unlicensed band induced by WiFi networks. Finally,
NITOS mobile sensor nodes are mounted on the bicycles of
volunteer participants. They are implemented using a self-
designed embedded device and custom firmware that controls

Fig. 1: NITOS BikesNet architecture.

the onboard sensors, logs measurements on stable storage and
manages the communication with the server, via the gateways.
Fig. 1 illustrates the system architecture.

To deal with the intermittent connectivity and disconnected
operation of mobile sensor nodes, NITOS BikesNet employs a
custom-developed RC component, which performs the actual
communication with the nodes while hiding any disconnec-
tions from the rest of the NITOS platform; as before, the RC
itself has a stable connection to the EC and OML components.
More specifically, in addition to conventional (synchronous)
commands, the RC supports so-called asynchronous com-
mands. A conventional command succeeds only if the node to
which it is addressed is available (i.e., is currently connected
to the server through a gateway), else it fails; this corresponds
to the usual operation of the RC. In contrast, an asynchronous
command is deferred if the corresponding node is not available;
it is queued within the RC, and is forwarded to the node as
soon as it becomes available. Asynchronous commands can
be associated with an expiration time, after which they are
dropped from the queue; they are also removed from the queue
if in the meantime the user issues a new, competing command
that effectively cancels them. Moreover, when a mobile sensor
node becomes available, the RC retrieves its measurements and
forwards them to an OML collection point.

B. Sensor node protocol
The high-level protocol between a mobile sensor node and

the RC is outlined in Table I. The conversation is initiated by
the node, which announces itself to the RC via a “HELLO”
message. Conversely, it sends a“BYE” message when it in-
tends to end the conversation; there is no negotiation here,
as the node unilaterally decides to sign-off. But note that
the conversation may also end abruptly, without the node
sending a “BYE” message. The transfer of commands to
the node and measurements/results to the RC is done via
the “CMD” and “RSLT” transaction, respectively. In both
cases, the other side must confirm the receipt and successful
handling of the message via an acknowledgment (“CMDACK”
or “RSLTACK”), else the transaction will be considered as
failed (and the message will be eventually retransmitted).
All protocol messages carry the node identifier in order for

Direction :: Message Comments

N → RC :: <node id>:HELLO

Node announces its availability. The RC should
update the node status internally. Initiate trans-
mission of pending commands from the RC to the
node, as well as transmission of pending results
from the node to the RC.

RC → N :: <node id>:CMD:<seq. #>:<payload>
N → RC :: <node id>:CMDACK:<seq. #>

RC sends the next pending command, and waits
for an acknowledgment. Can be repeated several
times.

N → RC :: <node id>:RSLT:<seq. #>:<payload>
RC → N :: <node id>:RSLTACK:<seq. #>

Node sends next batch of results to the RC,
and waits for acknowledgment. Can be repeated
several times.

N → RC :: <node id>:BYE
Node informs that it will sign off and become
unavailable. The RC should update the node status
internally.

TABLE I: Messaging protocol for the communication
between the resource controller (RC) and the node (N).

the RC to associate them with the corresponding internal
data structures. In addition, command/result messages and
the respective acknowledgments carry sequence numbers for
association and duplicate detection purposes.

Our current implementation uses TCP/IP as the underlying
transport service, because of its support for reliable com-
munication, flow-control and full-duplex bi-directional data
transfers. Mobile nodes are pre-configured with the IP address
and TCP port number of the RC (which runs on a publicly
accessible machine with a static address). Nodes connect
to the RC when they encounter a gateway and have not
communicated with the RC for some time. The connection
may remain open for a longer period, in which case the node
receives the new commands from the RC as soon as these are
issued from the user, and sends new measurements to the RC as
soon as these are performed. A node will close the connection
when all measurements have been successfully transferred to
the RC, and it has not received a new command from the RC
for some time. Of course, the connection can brake at any
point in time during the above transfers, as nodes may shut
down, reboot, or go out of range of the gateway.

Note that the protocol does not make any strong assump-
tions about the underlying transport. Thus it can be applied,
virtually unchanged, on top of different transports (besides
TCP/IP). In fact, we exploit the “portable” nature of the
protocol in how we interface the mobile sensor nodes to the
RC via ZigBee (as will be discussed in the sequel).

(a) Mobile sensor node (b) Component diagram (c) ZigBee gateway

Fig. 2: Custom-built hardware of the NITOS BikesNet platform

C. Developed hardware and firmware
The NITOS BikesNet sensor node, depicted in Fig. 2(a), is

built by combining different hardware components to create
a unified solution. Our prototype is based on the Arduino
platform [8] and several Arduino compatible modules because
of their open approach, great flexibility and the large number
of publicly available hardware modules and software libraries.
A high-level component diagram of the sensor node is shown
in Fig. 2(b).

Teensy microcontroller board: The main module of the
node is a Teensy 3.0 development board [9], which embeds a
32-bit ARM Cortex-M4 microprocessor. Teensy features 34
digital I/O pins (14 of those can be configured as analog
ones) and 3 UART ports. It operates at 3.3V, while the
microprocessor can be configured to run at 96MHz, 48MHz,
24MHz or 2MHz. Furthermore, Teensy can be put in sleep
mode to minimize power consumption. Notably, Teensy is fully
compatible with Arduino software, and it can be programmed
using the same tools.

Wireless interfaces: In order to give the node sufficient
flexibility in terms of networking, it has two sockets for
plugging-in communication modules. These are connected to
the Teensy via two different UART ports. Each interface has
separate hardware connections that are used to control the
power state (put the modules in sleep mode) and to monitor
the association status of the respective network interface.

We currently employ two modules that support different
popular wireless standards: the Xbee Series 2 module [10], and
the WiFly RN-171 module [11]. The Xbee module implements
the ZigBee protocol on top of 802.15.4 in the ISM 2.4GHz
band. The WiFly module implements the 802.11 b/g radio
protocol and is compatible with commercial WiFi access
points. In our current implementation, the Xbee is used to
associate with ZigBee gateways through which the node can
communicate with the RC. Of course, the WiFly also serves
this purpose. In addition, it can be used as a sensor, to scan
available WiFi networks. Different node configurations are
possible. For instance, one may have a WiFly module acting
as a network sensor, and an Xbee module or a second WiFly
module for the communication with the RC.

Sensors: The node is equipped with a GPS unit and
temperature, humidity and light-intensity sensors. The GPS is
a D2523T receiver [12] that provides geo-positioning as well
as ground speed and altitude. It also provides exact time/date
information, which in turn can be used to timestamp measure-
ments in a globally consistent way. The GPS is interfaced with

Teensy through a UART port.
The air temperature and humidity is measured via a sht11

digital sensor [13]. Finally, a photocell sensor that consists of
a light-dependent resistor is interfaced with one of Teensy’s
analog I/O pins, providing luminosity measurements.

microSD: The node also features a microSD slot connected
to Teensy. The microSD is used to persistently log sensor
measurements, until they are uploaded to the RC. This way
the node is able to collect a large amount of data without
having network connectivity to the RC.

Wake-on-shake: The Wake-on-Shake (WoS) [14] com-
bines a low-power microcontroller with the ADXL362 ac-
celerometer and has extremely low power consumption. It
provides an analog pin that is activated in case of an abrupt
shake (strong acceleration). We use WoS to awake Teensy as
soon as the mobile node starts moving, in order to initiate
the sensor measurement process. Note that the Teensy cannot
acquire vibration measurements by itself when in sleep mode.

Firmware: The firmware of the NITOS BikesNet sensor
node controls the entire operation of the device, e.g., it con-
figures and controls the peripheral modules, performs sensing
tasks, logs the respective measurements, implements power
management, etc.

In a nutshell, as long as the node is moving, the Teensy
periodically executes a full measurement cycle. If the node
stays immobile for a longer period of time, Teensy puts itself
and the wireless interfaces in sleep mode while it completely
turns off the rest peripherals apart from the WoS. Normal
operation is resumed when Teensy is woken up by WoS. To
use the WiFly as a sensor (for detecting the WiFi networks in
range), it is put in command mode and is instructed to perform
a scan operation. When the scan is completed, the WiFly
responds with the list of available networks. In case of using
a network module (WiFly or ZigBee) as a communication
channel, the firmware monitors the respective interface to
detect that a connection to a gateway has been established.
Then, it initiates a conversation with the RC (as described
previously). As said, the Xbee module is used exclusively for
the purpose of communicating with the RC (via a NITOS
ZigBee gateway). But unlike WiFly, Xbee does not come with
built-in support for TCP/IP. Fortunately, the firmware can talk
the same high-level protocol on top of the Xbee application-
level transport service; in turn, the ZigBee gateway acts as a
proxy for the node over a TCP connection to the RC. The
association with NITOS ZigBee gateways is done using a pre-
configured PAN id.

Fig. 3: NITOS mobile sensor node mounted on bicycle

ZigBee gateway: As already mentioned, we want a mobile
node to be able to communicate with the RC not only via
WiFi but also via ZigBee. The respective gateway, illustrated
in Fig. 2(c), is custom built for this purpose. It is based on an
Arduino Ethernet board, on top of which we mount a custom
shield with an Xbee module. The Ethernet is connected to a
backbone network through which the RC can be reached. The
Xbee is configured as a coordinator for a given PAN id. When
a node associates with the ZigBee network of the gateway, the
gateway initiates a TCP connection to the RC on behalf of the
node. From that point onwards, the gateway receives (over the
Xbee transport) the protocol messages sent by the node, and
forwards them (over TCP/IP) to the RC. The same is done for
the messages flowing in the other direction.

Installation of the NITOS sensor node: The sensor node,
enclosed in a waterproof case, is attached to the bicycle using
tire-ups. The antenna for the WiFi radio is fixed beneath the
saddle, and is connected via a pigtail to the WiFly interface
of the node. Finally, the GPS unit is placed on the handlebar
of the bicycle in order to have good signal reception. Fig. 3
illustrates the complete setup on one of our bicycles.

III. EXPERIMENTAL DEMONSTRATION

In this section, we analyze a representative experiment
that demonstrates the innovative potentiality of the developed
framework. For the purposes of this experiment, a couple of
sensing devices will be used for local demonstration of the
framework’s hardware. Due to constraints the GPS module
will not be used as the demonstration will be static and in
an indoor environment. However, the rest of the modules will
be fully operational and the movement of the bicycle will be
emulated manually as the same will be done for the network
disconnections that usually occur in a realistic experiment.

Initially, we describe the experiment scenario in an OMF
script, in which we clearly denote the timings of the ex-
periment as well as the modules we want to enable and
obtain measurements from. An example of a command can
be seen in the Listing 1 where the OMF will send the
command ‘StartDevice’ to the device with id number ‘2’ after 6
seconds of the experiment starting time. During the experiment
execution, OMF will relay commands to the sensing device so
that its modules will start measuring the surroundings. Several
features of the framework will be demonstrated, like the Wake-
on-Shake (WoS) module which helps in saving energy by
making the device to “sleep” when there is no movement
of the bicycle for a specific duration of time. Regarding the
abrupt disconnections, those will be emulated manually by
disconnecting the wireless interface and reconnecting it back.
These actions correspond to the movement of a bicycle in a
city, where network connectivity is in general fragmentary and
the movement of a bike is disrupted due to traffic conditions.

a f t e r 6 . s e c o n d s do
v a l = { : i d => ’ 2 ’ , : p a y l o a d => ’ S t a r t D e v i c e ’}
g . r e s o u r c e s [t y p e : ’ b i k e s n e t ’] . cmd = v a l

end

Listing 1: An example command

The aforementioned features will illustrate the delay tol-
erance of the framework, by caching the commands/messages
from the experimenter to the sensing devices and vice versa.
In addition to this, the importance of getting the device or
part of its modules into “sleep” mode will be highlighted
as a prominent factor for power saving. Finally, the acquired
measurements will be depicted live with the help of the OMF’s
visualization framework.

IV. CONCLUSION

In this demo paper, we demonstrate the NITOS BikesNet
framework that enables experimenters to remotely control a
mobile wireless sensing network constituted of sensing devices
mounted on bicycles. In particular, we present an experiment
which shows how the proposed framework facilitates experi-
ment execution in our custom-made and modular devices.

V. ACKNOWLEDGEMENTS

The authors acknowledge the support of the European
Commission through STREP project REDUCTION (FP7-
288254) and IP project EINS (FP7-288021).

REFERENCES
[1] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,

and M. B. Srivastava, “Participatory sensing,” in Proc. 1st ACM Work-
shop on World-Sensor-Web: Mobile Device Centric Sensory Networks
and Applications (WSW), 4th ACM Conf on Embedded Networked
Sensor Systems (SenSys), 2006.

[2] Network Implementation Testbed using Open Source platforms.
[Online]. Available: http://goo.gl/j67I6k

[3] T. Rakotoarivelo, G. Jourjon, and M. Ott, “Designing and orchestrating
reproducible experiments on federated networking testbeds,” Computer
Networks, Elsevier, vol. 63, 2014.

[4] D. Stavropoulos, G. Kazdaridis, T. Korakis, D. Katsaros, and L. Tassiu-
las, “Demonstration of a vehicle-to-infrastructure (v2i) communication
network featuring heterogeneous sensors and delay tolerant network
capabilities.” in Proc. 8th Intl ICST Conf on Testbeds and Research
Infrastructure. Development of Networks and Communities (TRIDENT-
COM), 2012.

[5] V. Maglogiannis, G. Kazdaridis, D. Stavropoulos, T. Korakis, and
L. Tassiulas, “Enabling mobile sensing through a dtn framework,” in
Proc. 8th ACM Intl workshop on Wireless Network Testbeds, Experi-
mental Evaluation and Characterization (WiNTECH), 2013.

[6] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “Bikenet: A mobile sensing system for cyclist
experience mapping,” ACM Transactions on Sensor Networks (TOSN),
vol. 6, no. 1, 2009.

[7] L. Sanchez, V. Gutierrez, J. A. Galache, P. Sotres, J. R. Santana,
J. Casanueva, and L. Munoz, “Smartsantander: Experimentation and
service provision in the smart city,” in Proc. 16th IEEE Intl Symposium
on Wireless Personal Multimedia Communications (WPMC), 2013.

[8] Arduino platform. [Online]. Available: http://www.arduino.cc/
[9] Teensy 3.0 dev board. [Online]. Available: http://goo.gl/BMG4XM

[10] Xbee wireless module. [Online]. Available: http://www.digi.com/xbee/
[11] Wifly - rn-171xv 802.11 b/g. [Online]. Available: http://goo.gl/p7TCC5
[12] D2523T GPS Receiver. [Online]. Available: http://goo.gl/Nkw3b6
[13] SHT11 Temp & Hum Sensor. [Online]. Available: http://goo.gl/lnzf6N
[14] Wake-on-shake Board. [Online]. Available: http://goo.gl/4VwivR

