Pursuing a Software-Defined Information-Centric Network

Dimitris Syrivelis

CERTH-ITI and University of Thessaly
Contents

• An Information – Centric Network Architecture
 • An ICN Node Architecture
 • Using LIPSIN for packet forwarding
 • Designing a LIPSIN switch using Openflow and changes to ICN node architecture
 • Benefits of using SDN support
An ICN Network Architecture

• Proposed by FP7 PURSUIT Project
 http://www.fp7-pursuit.eu

• SDN support developed in FP7 OpenLab project
 http://www.ict-openlab.eu

• A modular design that supports publish/subscribe semantics with 3 discrete functions:
 – Rendezvous
 – Topology Management
 – Forwarding
A domain deployment example
Topology Management Function

Topology Manager

Node 1

Node 2

Node 3

Node 4

Node 5

Domain Network

EWSDN 2012, 25-26 October, Darmstadt Germany
Topology Management/Forwarding

Domain Network

Node 1
Fw Logic

Node 2
Fw Logic

Node 3
Fw Logic

Node 4
Fw Logic

Node 5
Fw Logic

Topology Manager

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

Topology Manager

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
</table>

Node 1
- Fw Logic

Node 2
- Fw Logic

Node 3
- Fw Logic

Node 4
- Fw Logic

Node 5
- Fw Logic

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

Topology Manager

Information Identifier	Type	Node ID

Node 1
Node 2
Node 3
Node 4
Node 5

Domain Network

Rendezvous

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABC1234</td>
<td>Pub</td>
<td>Node1</td>
</tr>
</tbody>
</table>

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

Topology Manager

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABC1234</td>
<td>Pub</td>
<td>Node1</td>
</tr>
</tbody>
</table>

Node 1
Fw Logic

Node 2
Fw Logic

Node 3
Fw Logic

Node 4
Fw Logic

Node 5
Fw Logic

Domain Network

Pub

Sub

Rv Req
Example System Operation

Topology Manager

Information Identifier	Type	Node ID
0xABC1234 | Pub | Node1
0xABC1234 | Sub | Node3

MATCH!

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABC1234</td>
<td>Pub</td>
<td>Node1</td>
</tr>
<tr>
<td>0xABC1234</td>
<td>Sub</td>
<td>Node3</td>
</tr>
</tbody>
</table>

EWSDN 2012, 25-26 October, Darmstadt Germany
Example System Operation

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABC1234</td>
<td>Pub</td>
<td>Node1</td>
</tr>
<tr>
<td>0xABC1234</td>
<td>Sub</td>
<td>Node3</td>
</tr>
</tbody>
</table>
Contents

• An Information – Centric Network Architecture
• An ICN Node Architecture
• Using LIPSIN for packet forwarding
• Designing a LIPSIN switch using Openflow and changes to ICN node architecture
• Benefits of using SDN support
An ICN node architecture (BlackAdder prototype)

The service model exports pure publish subscribe semantics, along with synchronization primitives for robust application development.

EWSDN 2012, 25-26 October, Darmstadt Germany
Contents

• An Information – Centric Network Architecture
• An ICN Node Architecture
• Using LIPSIN for packet forwarding
• Designing a LIPSIN switch using Openflow and changes to ICN node architecture
• Benefits of using SDN support
LIPSIN for packet forwarding

• LIPSIN (Petri Jokela et al.) is a source-based routing system which uses bloom filters to encode routes to one or more destinations (multicast trees).
• LIPSIN encodes physical links by applying bloom filters on a fixed size, few-bytes long, identifier which is prepended on each packet.
• Once routes are encoded into a single forwarding identifier at the source, LIPSIN forwarding achieves line speed.
How LIPSIN works
How LIPSIN works

i) Assign fixed length deployment-unique identifiers to all physical links
How LIPSIN works

ii) For each set of destinations, you compute the route at the source as follows:
How LIPSIN works

ii) For each set of destinations, you compute the route at the source as follows:
How LIPSIN works

iii) The forwarding identifier can then be used on each forwarder to choose local outgoing links

EWSDN 2012, 25-26 October, Darmstadt Germany
iii) The forwarding identifier can then be used on each forwarder to choose local outgoing links.
How LIPSIN works

iii) The forwarding identifier can then be used on each forwarder to choose local outgoing links.
How LIPSIN works

iii) The forwarding identifier can then be used on each forwarder to choose local outgoing links.

EWSDN 2012, 25-26 October, Darmstadt Germany
iv) Multihop routing is implemented also by the same operation on the Forwarding identifier on each local forwarder.
iv) Multihop routing is implemented also by the same operation on the Forwarding identifier on each local forwarder.

EWSDN 2012, 25-26 October, Darmstadt Germany
Contents

• An Information – Centric Network Architecture
• An ICN Node Architecture
• Using LIPSIN for packet forwarding
• Designing a LIPSIN switch using Openflow and changes to ICN node architecture
• Benefits of using SDN support
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame

<table>
<thead>
<tr>
<th>LIPSIN IDENTIFIER</th>
<th>INFORMATION IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Payload</td>
</tr>
</tbody>
</table>

EWSDN 2012, 25-26 October, Darmstadt Germany
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame

LIPSIN IDENTIFIER

INFORMATION IDENTIFIER

Payload

EWSDN 2012, 25-26 October, Darmstadt Germany
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame

LIPSIN IDENTIFIER

INFORMATION IDENTIFIER

Payload

EWSDN 2012, 25-26 October, Darmstadt Germany
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame

<table>
<thead>
<tr>
<th>LIPSIN IDENTIFIER</th>
<th>INFORMATION IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>
Why using LIPSIN with SDN and not directly information identifiers?

ICN ethernet frame

<table>
<thead>
<tr>
<th>LIPSIN IDENTIFIER</th>
<th>INFORMATION IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td></td>
</tr>
</tbody>
</table>
Modifying LIPSIN functionality for Openflow datapaths

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
<th>Fw Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendezvous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain Network

Topology Manager

EWSDN 2012, 25-26 October, Darmstadt Germany
Moving LIPSIN functionality to Openflow datapaths

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Node 1
Fw Logic

Node 2
Fw Logic

Node 3
Fw Logic

Node 4
Fw Logic

Node 5
Fw Logic

Topology Manager

Controller

OF Datapath

Rendezvous

EWSDN 2012, 25-26 October, Darmstadt Germany
Moving LIPSIN functionality to Openflow datapaths

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EWSDN 2012, 25-26 October, Darmstadt Germany
Example for 5-port OpenFlow datapath

Each switch port is assigned a deployment unique Identifier by the Topology Manager which is kept at the local controller

- Port 1: 1000 0000
- Port 2: 0100 0000
- Port 3: 0010 0000
- Port 4: 0001 0000
- Port 5: 0000 1000
Example for 5-port OpenFlow datapath

Openflow datapath is configured to match forwarding identifiers on each packet with respective delivery ports,
Example for 5-port OpenFlow datapath

Openflow datapath sends to the local controller packets with forwarding identifiers that don’t match any entry.

FW Logic

Controller

OF Datapath

<table>
<thead>
<tr>
<th>Port</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 0000</td>
</tr>
<tr>
<td>2</td>
<td>0100 0000</td>
</tr>
<tr>
<td>3</td>
<td>0010 0000</td>
</tr>
<tr>
<td>4</td>
<td>0001 0000</td>
</tr>
<tr>
<td>5</td>
<td>0000 1000</td>
</tr>
</tbody>
</table>

0010 1000

INFORMATION IDENTIFIER

Payload

EWSDN 2012, 25-26 October, Darmstadt Germany
Example for 5-port OpenFlow datapath

Local openflow controller uses the LIPSIN bloom-filter approach to decode the identifier and find the local datapath ports where the packet should be delivered and installs the rule.

```
Port 1 1000 0000
Port 2 0100 0000
Port 3 0010 0000
Port 4 0001 0000
Port 5 0000 1000
```
ICN architecture using SDN

Node 1

Node 2

Node 3

Node 4

Node 5

Topology Manager

OF Datapath 1

FW Logic

Controller

OF Datapath 2

FW Logic

Controller

Rendezvous

Information Identifier	Type	Node ID

ICN architecture using SDN Example

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Node 1
- Controller
- FW Logic
- Port 1: 1000 0000
- Port 2: 0100 0000
- Port 3: 0010 0000
- Port 4: 0001 0000

Node 2
- OF Datapath 1
- Port 1: 0000 1000
- Port 2: 0000 0100
- Port 3: 0000 0010

Node 3
- OF Datapath 2
- Port 1: 0000 1000
- Port 2: 0000 0100
- Port 3: 0000 0010

Node 4
- Rendezvous

Node 5
- Topology Manager
- OF1
 - Port 1: 0001 0000
 - Port 2: 0100 0000
 - Port 3: 0010 0000
 - Port 4: 0001 0000
- OF2
 - Port 1: 0001 0000
 - Port 2: 0100 0000
 - Port 3: 0010 0000
 - Port 4: 0001 0000
ICN architecture using SDN Example

- **Topology Manager**
 - Node 1
 - Node 2
 - Node 3
 - Node 4
 - Node 5

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **OF Datapath 1**
 - FW Logic
 - Controller
 - Port 1: 1000 0000
 - Port 2: 0100 0000
 - Port 3: 0010 0000
 - Port 4: 0001 0000

- **OF Datapath 2**
 - FW Logic
 - Controller
 - Port 1: 0000 1000
 - Port 2: 0000 0100
 - Port 3: 0000 0010

- **Rendezvous**
 - Node 4

- **Pub**
ICN architecture using SDN Example

Topology Manager

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
</table>

Node 1

Node 3

Node 5

Node 2

Node 4

Rendezvous

FW Logic

Controller

OF Datapath 1

Port 1: 1000 0000
Port 2: 0100 0000
Port 3: 0010 0000
Port 4: 0001 0000

OF Datapath 2

Port 1: 0000 1000
Port 2: 0000 0100
Port 3: 0000 0010

Node 1

Node 3

Node 2

Node 4

Node 5

FW Logic

Controller

OF1

OF2

1 2 3 4 5

0001 1000
Rv Req
ICN architecture using SDN Example

Node 1
Node 3
Node 5

Topography Manager

Information Identifier	Type	Node ID
0xABCD123 | Pub | Node1

Node 4

Rendezvous

Node 1
Node 2
Node 3

Sub

0000 1000
Rv Req

FW Logic
Controller

OF Datapath 1

Port 1: 1000 0000
Port 2: 0100 0000
Port 3: 0010 0000
Port 4: 0001 0000

FW Logic
Controller

OF Datapath 2

Port 1: 0000 1000
Port 2: 0000 0100
Port 3: 0000 0010
ICN architecture using SDN Example

Node 1
Node 2
Node 3
Node 4
Node 5

Topology Manager

Information Identifier	Type	Node ID
0xABCD123 | Pub | Node1
0xABCD123 | Sub | Node3

Rendezvous

Node 4

0010 0010 TM Req

OF1
OF2

1 2 5
3 4

FW Logic
Controller

OF Datapath 1

Port 1 1000 0000
Port 2 0100 0000
Port 3 0010 0000
Port 4 0001 0000

Port 1 0001 0000
Port 2 0000 1000
Port 3 0000 0100

OF Datapath 2

FW Logic
Controller

Match!
ICN architecture using SDN Example

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABCD123</td>
<td>Pub</td>
<td>Node1</td>
</tr>
<tr>
<td>0xABCD123</td>
<td>Sub</td>
<td>Node3</td>
</tr>
</tbody>
</table>

Node 1

Node 2

Node 3

Node 4

Controller

FW Logic

OF Datapath 1

OF Datapath 2

Port 1: 1000 0000
Port 2: 0100 0000
Port 3: 0010 0000
Port 4: 0001 0000

Port 1: 0000 1000
Port 2: 0000 0100
Port 3: 0000 0010

Rendezvous

1000 0000 START_PUBLISH 0001 0100
ICN architecture using SDN Example

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABCD123</td>
<td>Pub</td>
<td>Node 1</td>
</tr>
<tr>
<td>0xABCD123</td>
<td>Sub</td>
<td>Node 3</td>
</tr>
</tbody>
</table>

Rendezvous

Node 4

Node 5

Topology Manager

OF1

OF2

Node 1

Node 2

Node 3

Node 4

Node 5

FW Logic

Controller

Controller

FW Logic

OF Datapath 1

OF Datapath 2

OF 1 Flow tables

<table>
<thead>
<tr>
<th>FID</th>
<th>PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 0000</td>
<td>1</td>
</tr>
</tbody>
</table>

Port 1: 1000 0000
Port 2: 0100 0000
Port 3: 0010 0000
Port 4: 0001 0000

Sub

Pub

0001 0100 DATA
ICN architecture using SDN Example

Node 1

Node 3

Node 5

Node 4

Node 2

Node 3

OF Datapath 1

OF Datapath 2

FW Logic

Controller

Controller

Toplogy Manager

Port 1 1000 0000
Port 2 0100 0000
Port 3 0010 0000
Port 4 0001 0000

Port 1 0000 1000
Port 2 0000 0100
Port 3 0000 0010

OF 1 Flow tables

FID	PORT
1000 0000 | 1
0001 0100 | 4

Information Identifier	Type	Node ID
0xABCD123 | Pub | Node1
0xABCD123 | Sub | Node3

Rendezvous
ICN architecture using SDN Example

![Diagram of ICN architecture using SDN Example]

- **Topography Manager**
- **OF Datapath 1**
 - Controller
 - FW Logic
- **OF Datapath 2**
 - Controller
 - FW Logic

Information Identifier

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xABCD123</td>
<td>Pub</td>
<td>Node1</td>
</tr>
<tr>
<td>0xABCD123</td>
<td>Sub</td>
<td>Node3</td>
</tr>
</tbody>
</table>

OF 1 Flow tables

<table>
<thead>
<tr>
<th>FID</th>
<th>PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 0000</td>
<td>1</td>
</tr>
<tr>
<td>0001 0100</td>
<td>4</td>
</tr>
</tbody>
</table>

Ports

- Port 1: 1000 0000
- Port 2: 0100 0000
- Port 3: 0010 0000
- Port 4: 0001 0000
- Port 1: 0000 1000
- Port 2: 0000 0100
- Port 3: 0000 0010
Contents

• An Information – Centric Network Architecture
• An ICN Node Architecture
• Using LIPSIN for packet forwarding
• Designing a LIPSIN switch using Openflow and changes to ICN node architecture
• Benefits of using SDN support
Benefits of using SDN

- ICN node architecture gets simplified and forwarding is carried by the network and is completely decoupled from the nodes.
Benefits of using SDN

• Network bootstrap gets very simplified
Benefits of using SDN

- Network bootstrap gets very simplified

EWSDN 2012, 25-26 October, Darmstadt Germany
Benefits of using SDN

• Network bootstrap gets very simplified
Benefits of using SDN

- Network bootstrap gets very simplified
Benefits of using SDN

- Topology Management internal structures get simpler and response is improved
Future Work

• Use Multi-stage Bloom filters to avoid having different FID labels for the same delivery ports within a datapath
The problem

Topology Manager

<table>
<thead>
<tr>
<th>Information Identifier</th>
<th>Type</th>
<th>Node ID</th>
</tr>
</thead>
</table>

Rendezvous

Node 4

OF1

1 2 5

OF2

3 4

Node 5

Node 1

Node 2

Node 3

OF Datapath 1

FW Logic

Controller

Port 1

1000 0000

Port 2

0100 0000

Port 3

0010 0000

Port 4

0001 0000

OF Datapath 2

FW Logic

Controller

OF 2 Flow tables

<table>
<thead>
<tr>
<th>FID</th>
<th>PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 1000</td>
<td>1</td>
</tr>
<tr>
<td>0001 1000</td>
<td>1</td>
</tr>
</tbody>
</table>

Port 1

0000 1000

Port 2

0000 0100

Port 3

0000 0010
Future Work

• Future work
 – Use SDN to simplify handover in ICN mobility
Thank You!

Pursuit BlackAdder Prototype:
https://github.com/fp7-pursuit/blackadder

Questions ?