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Abstract—We examine decentralized learning and access al-
gorithms for opportunistic spectrum access with multiple users.
Several distributed algorithms have been proposed for this prob-
lem, mainly as an application of corresponding algorithms for the
multiarmed bandit problem, which are provably order optimal in
terms of regret. However, none of them pays particular attention
to reducing collisions among users caused by lack of message
exchanges. The effect of such collisions becomes more observable
as the number of users increases, causing a considerable amount
of added regret, despite retaining the optimal order. Focusing
on time division fair sharing schemes based on the idea of
orthogonal offsets, we propose a simple algorithm for detecting
offset collisions and trying to resolve them as quickly as possible,
inspired from persistent distributed schemes for multiple access.
We demonstrate the improved performance achieved by our
algorithm by means of simulations.

I. INTRODUCTION

Channel selection in opportunistic spectrum access envi-
ronments with multiple secondary users (SUs) is a challenging
problem, as it entails two parallel objectives: learning the
channels with the highest average availabilities and efficiently
coordinating access among users to avoid collisions. The
challenge becomes even greater if we restrict our attention
to fully distributed schemes, that is, if there is no message
exchange among the users, neither at the beginning nor during
the learning and access process.

The learning objective has been studied extensively, mainly
viewed as an extension to the relative single-user problem. It
is typically modeled as a multiarmed bandit (MAB) problem,
which, in its simplest form, can be described as follows: There
are N independent arms. Playing arm i yields an i.i.d. random
reward with a distribution parameterized by an unknown θi.
At each timeslot, the player chooses one arm to play, aiming
to maximize the total expected reward in the long run. In
the analogy with the opportunistic spectrum access schemes,
the N arms correspond to N primary channels and rewards
correspond to channel availabilities for secondary users at each
slot.

The model we focus on comprises N channels of equal
bandwidth but different and unknown expected availabilities
and M secondary users where M < N . That is, we consider
scenarios where the available bandwidth is sliced in a way that
channels outnumber the population of secondary users. We are
interested in schemes both socially optimal and fair, so clearly
the goal is to have the users equally share the rewards offered
by the M channels with the highest availabilities.

Our main goal is to devise efficient algorithms for reducing
collisions due to lack of coordination. Focusing on time

division fair sharing schemes where the target is to have each
user sequentially access the M best channels with a unique
schedule offset with respect to other users, we propose a strat-
egy for detecting offset collisions and trying to resolve them
as quickly as possible. For the second objective, that of quick
offset collision resolution, we revisit some of the work on
persistent multiple access schemes proposed as enhancements
to CSMA/CA.

As the rate at which the users learn the true ranking of
primary channels in terms of availabilities can not be improved
without explicit cooperation in terms of message exchanges,
intuitively what we are trying to achieve is to minimize the
added regret caused by the lack of offset coordination, even
when all users have accurate estimates of the channel ranking.
Although even a trivial randomized policy will guarantee that
this added regret remain finite (eventually the users settle in
orthogonal offsets), restricting its magnitude for a finite time
horizon T by means of fast convergence requires more careful
planning. Given that for a network with more than a few users
this added regret can be shown to form the greatest part of
the overall regret, we claim that it is important to place the
required focus on this problem.

The remainder of this paper is organized as follows. Section
2 outlines related work on the MAB problem for a single user,
on decentralized algorithms for MAB with multiple users, and
on multiple access schemes with persistence properties which
converge to collision-free schedules. The basic network model
is presented in Section 3, along with the assumptions made.
Our proposed decentralized algorithm with fast convergence to
collision-free operation is explained in Section 4. In Section
5, we evaluate the performance of our algorithms by means
of simulations and demonstrate the significant improvements
with respect to existing algorithms. Section 6 gathers various
remarks regarding the design choices we made and provides
hints for future extensions of this work. The paper is concluded
with Section 7, which summarizes the results obtained.

II. RELATED WORK

A. Background on single player multiarmed bandit

Due to the prohibitive computational complexity associ-
ated with Bayesian approaches to solving the MAB problem,
non-Bayesian algorithms have gained particular attention in
this context. These algorithms typically try to minimize the
expected regret, which is the reward loss with respect to a so-
called genie-aided scenario where the expected arm rewards
are known in advance.



In [1] the minimum possible asymptotic regret of any uni-
formly good policy was established and shown to be O(logT ),
with a leading constant that depends on the Kullback-Leibler
distances between the best arm and suboptimal arms. The
authors in [1] also constructed an optimal policy, i.e. a policy
that achieves the lower bound, for several reward distributions
including Bernoulli, Poisson, Gaussian and Laplace, under the
assumption that the distribution type is known.

In [2], the results of [1] were extended to the case of
multiple plays, that is, the player is allowed to play M arms
in each slot instead of one. A straightforward extension of the
results in [1] is possible, and the only thing that changes is the
leading constant in the logarithmic regret. The result of [2] is
equivalent to a centralized MAB with M players each playing
one arm per slot. If all players exchange observations at
each slot and make decisions jointly (which means they avoid
selecting common channels - they’re always orthogonalized),
then they act as a single player who has the ability to choose
M arms simultaneously. As a consequence, the lower bound of
[2] is a lower bound for any decentralized MAB where players
don’t exchange information and make decisions independently.
It is also a lower bound for any potential cooperative policy,
where the players exchange information but perhaps not on a
per slot basis.

In [3], Agrawal proposes an order optimal index-type
policy, where each arm is assigned with an index that is a
function of its sample mean and the arm with the greatest
index will be played in the next slot. The proposed policy is
simpler than [1], however it does not achieve the best leading
constant.

In [4], the authors establish a simple order-optimal sample
mean based index policy based on [3], called UCB1 (UCB
stands for Upper Confidence Bound). For an arm i with sample
mean θ̂i which has been played ni times, the index at timeslot
t is given by:

I(θ̂i, ni) = θ̂i +

√
2logt

ni
(1)

This policy yields a larger leading constant than [3]. The
main difference with the previous works is that [4] proves
that the logarithmic order of regret is not only achievable
asymptotically, but also uniformly over time. UCB1 requires
reward distributions of known finite support, but the type of
the distribution is not required. Looking at the expression, we
see that it corresponds to an ”increased” reward estimate. The
second term is increasing while an arm is not played, but it
does so with a rate that guarantees that the optimal arm will
be played exponentially more often than the suboptimal arms.

In [5] a policy using deterministic sequencing of explo-
ration and exploitation sequences (DSEE) is proposed. In this
policy, purely explorative periods where all the channels are
probed are interpolated with exploitation periods where the es-
timated best channel is consistently targeted. Its advantage over
the previous approaches is that does not require any assumption
on the distribution type or its support. The disadvantage is
that it requires knowledge of a lower bound on the difference
between the expected rewards of the best and the second best
arm, a potentially demanding requirement.

B. Work on distributed algorithms for multiple user multi-
armed bandit

Both game-theoretic and non-game-theoretic approaches
have been adopted in the multiple user case of MAB problems.
To remain within the scope of our work, here we only list some
non-game-theoretic work on MAB with i.i.d. rewards, which
has been performed specifically focusing on the opportunistic
spectrum access application.

Non-game theoretic approaches focus on minimizing the
total system regret, which is the aggregate reward loss with
respect to the genie-aided case where the users are aware of
channel statistics and always avoid collisions among them.
Apart from the balance between exploration and exploitation,
the additional challenge lies in the construction of decen-
tralized algorithms aiming at orthogonalizing the users, i.e.
having them access distinct channels at each slot. These
approaches typically involve implicit cooperation, in the sense
that the secondary users agree to adopt a policy that achieves
system regret optimality. [6], [7] and [8] are examples of such
approaches. These papers focus on the case of a known number
of users, equal to M , and assume that the number of channels
N is greater than M . They all achieve logarithmic order of
the regret, which is the optimal order.

Note that from a policy perspective, what happens when
two or more SUs sense the same channel and find it to be
available is not so crucial, provided that the expected reward
for each user in this case is less than the expected reward if it
accessed the channel by itself. For instance, different models
might assume collision or CSMA contention or perhaps time
sharing. In any case, the outcome is suboptimal from a system
perspective.

In [6] each of the M SUs settles on a particular priority
rank, say wj for user j, and targets the channel with the
wj-th best availability. The proposed algorithm converges to
a socially optimal user-channel configuration, but does not
achieve fairness among users.

In [7], on the other hand, fairness among users is achieved
through the use of a time division fair sharing (TDFS) structure
featuring M subsequences, where a user targets a channel
of different rank in each subsequence. In order to avoid
collisions, users must try not to target channels of the same
rank during the same timeslot. An orthogonal set of offsets
is required for this purpose. If offsets are not preallocated by
some mechanism, users must employ feedback from collisions
experienced to converge to such an offset configuration. Rapid
convergence to orthogonal offsets is the primary object of our
work in the present paper.

TDFS policies are also used in [8], where they are com-
bined with a variant of UCB1 suitable for targeting channels
with any rank in descending reward order (not only the best
channel), called SL(k). The resulting algorithm is named
DLF (Distributed Learning with Fairness). SL(k) was initially
proposed in the context of prioritized user ranking in this work,
where it is crucial to use it instead of UCB1 because a user
always targets the same rank. In DLF each user targets all M
best channels, hence UCB1 can also be used as is.

In [10] an analysis of the problem of allocation of multiple
users to channels is performed under a general interference



function and considering various levels of knowledge of users
and levels of cooperation. The model considered includes the
case where the number of users is greater than the number
of channels. Randomized algorithms with sublinear but not
logarithmic regret are proposed for settings with i.i.d. channel
rewards.

In [5] a scheme using DSEE is also proposed for the
case of multiple users. The drawback of the scheme is that it
requires knowledge of a lower bound on the expected reward
difference between the M − th and the (M + 1) − th arm.
The scheme uses the sampling results from the exploration
periods to distinguish the M best channels and uses common
arm indices for fair time sharing in the exploitation periods.
User offsets are considered predetermined, however it is easy
to see that in schemes with random offsets the clear separation
of exploration and exploitation intervals has the added benefit
of simplifying the distributed convergence to orthogonal time
division fair schedules. Indeed, offset collisions can be detected
and resolved quickly during the exploration intervals, when
there is no channel ranking ambiguity.

The above works generally assume perfect sensing for
primary activity. Taking imperfect sensing into consideration
complicates the decentralized MAB problem if users cannot
distinguish between collisions with primary and with other
secondary users. See [9] for an approach to decentralized MAB
under potentially corrupted sensing samples based on a TDFS
structure with preallocated offsets, where the main issue is
synchronization of channel access orders between transmitter
and receiver.

C. Alternative MAC schemes for increased efficiency

Part of the results of this work is inspired by multiple
access schemes proposed in the literature as alternatives to
CSMA/CA. The main goal of these schemes is to increase
medium utilization through minimizing medium idle time.
The idea is that the stations try to settle in a fixed backoff
configuration and essentially schedule their transmissions into
a TDMA-like round robin fashion.

In [11] the Learning-BEB algorithm was proposed, also
referred to as CSMA/ECA. It is essentially a variation of
802.11 DCF using a fixed backoff V after a successful
transmission and a uniformly random backoff after a colliding
transmission. This is essentially the algorithm used in [7] to
reach a collision-free offset configuration. Convergence to a
collision-free schedule with Learning-BEB can take a lot of
time, particularly when the number of stations is close to the
number of slots [13].

In the ZC-MAC algorithm proposed in [12], each station
observes all timeslots, not just the ones it transmits in. Upon
a successful transmission, it ”reserves” the selected timeslot,
provided it does not leave it idle for more than a predetermined
number of timeslots. This is achieved by stations only trying
to transmit to non-reserved slots. Upon a failure, the station
looks at the slot occupancy in the previous schedule and makes
a uniform selection in the set consisting of idle slots and its
previously selected slot.

In the L-ZC algorithm proposed in [13] each station keeps
using the same slot while its transmissions are successful.

In case of transmission failure, it selects the same slot with
probability γ or one of the ni idle slots with probability
(1 − γ)/ni. For C slots and N users, γ is chosen to be
equal to 1/(C − N + 2). In the L-MAC algorithm proposed
in the same work, inspired from [14], the stations retain a
probability vector for the C slots initialized with a uniform
distribution. Upon a successful transmission, a station updates
the probability of selecting the same slot to 1 (and 0 for the rest
of the slots), while upon a failure the probability of selecting
the last slot s(n) is updated as ps(n)(n+ 1) = βps(n)(n) and
the probability of selecting another slot j ̸= s(n) is updated
as pj(n + 1) = βpj(n) +

1−β
C−1 . In agreement to intuition,

choosing β = 1 (persistence) minimizes mean convergence
time, however taking into account factors such as transient
fairness and throughput under oversubscription motivates a
somewhat lower value β = 0.95.

The L-MAC algorithm is the one more suited to our
problem, because it does not assume that the stations can sense
idle slots. Indeed, in our framework the equivalent of idle slots
would be unused offsets, and users can only observe activity
at their selected offsets.

D. Our Contribution

Our contribution falls into the region of decentralized algo-
rithms for multiple user opportunistic spectrum access under
the assumption that the number of channels is greater than that
of secondary users. It specifically focuses on the case where
there are no preallocated user ranks or priorities and builds
upon prior existing work, by further incorporating an offset
collision detection functionality and a persistent algorithm for
multiple access.

III. BASIC MODEL

We have N independent primary channels and slotted time
indexed by t. The availability of channel i is a Bernoulli
random process Xi(t) with expected value θi.1 We denote the
set of channel average availabilities as Θ = {θi, 1 ≤ i ≤ N}.
There are M decentralized secondary users (SUs), where by
the term users we refer to disjoint transmitter-receiver pairs.
M is smaller than N and the users are infinitely backlogged.
We do not examine the case where M is greater than N ,
because then there is no learning dimension in the problem,
since the socially optimal strategy entails exploitation of all
the channels.

At each timeslot t, each user independently selects one
channel for its transmission. It senses the selected channel for
primary transmissions at the beginning of the timeslot. If it is
found idle, it transmits in the remainder of the timeslot. Else,
it stays silent until the next timeslot. Sensing for primary user
activity is assumed to be error-free, even though a relaxation of
this assumption can be easily incorporated into our algorithm,
along the lines of [9]. All users perceive the same channel
availabilities.

When multiple users transmit in the same channel at
the same timeslot, a collision occurs and none of the users

1Our proposed algorithms are also applicable to MAB problems with other
types of reward distributions. The only requirement is that collision events are
observable.



gets any reward. We assume that in the event of a collision
a user can not distinguish the number of users that were
involved. The only feedback is the presence or not of an ACK
from the receiver side, which determines if a collision took
place. If a user is the only one to transmit in its selected
channel, it receives a reward equal to 1. Note that the learning
ability of a secondary user is not affected by collisions, since
sensing for primary activity takes place before any secondary
transmissions.

We denote by πj(t) the local policy for user j at timeslot
t, which may be deterministic or randomized, and by π =
{πj(t), 1 ≤ j ≤ M} the set of policies of all users. The total
regret of a decentralized policy π after t timeslots and for a set
of availabilities Θ is the expected aggregate reward loss of the
policy when compared to a genie aided scheme where the best
M channels are known in advance and the users are always
orthogonalized. If we define Ii,j(t) to be 1 when user j is the
sole user of channel i at timeslot t and 0 otherwise, and O∗

M
to be the set of channels with the M largest availabilities, then
the expected total regret after t timeslots is expressed as

Rπ(Θ; t) = t
∑

i∈O∗
M

θi − Eπ[
t∑

s=1

N∑
i=1

M∑
j=1

Xi(s)Ii,j(s)] (2)

In the above expression, the expectation is taken with respect
to both the random process of channel availabilities and the
possibly randomized channel selection policies of the users.

In order to efficiently learn the best M channels and their
order, we assume that each user is employing the SL(k)
algorithm, developed in [8], which is a variation of UCB1 algo-
rithm targeted at detecting the k-th best channel, while UCB1
only targets the best one. We briefly present the algorithm here
again, for ease of reference. Consider any random user and
assume that at timeslot t it is targetting the k-th best channel
and has sensed the i-th channel ni(t) times, observing a sample
mean of θ̂i(t). Then, SL(k) works as shown in Algorithm 1.

Algorithm 1 The SL(k) algorithm
Notation
θ̂i(t): Sample mean of channel i at slot t
ni(t): Number of samples of channel i at slot t
Xi(t): Availability (0 or 1) of channel i at slot t
c(k): Channel ranked k according to the current state of
learning

Initialization: Play each arm once

Main Loop:
t = t+ 1
Let Ok contain the k arms with the k largest values in:
θ̂i(t− 1) +

√
2lnt

ni(t−1)

Select channel c(k) in Ok such that:
c(k) = argmini∈Ok

{θ̂i(t− 1)−
√

2lnt
ni(t−1)}

θ̂c(k)(t) =
θ̂c(k)(t−1)nc(k)(t−1)+Xc(k)(t)

nc(k)(t−1))+1

nc(k)(t) = nc(k)(t− 1) + 1

In order to avoid collisions while retaining fairness among
users, a time division fair sharing (TDFS) policy is employed.

Fig. 1. Example of the structure of a M -slot round in DLF, where the notion
of user offset is depicted

We assume that each user is aware of the total number of users
in the network (M ). After the initialization period, where all
N channels are sensed by all users, time is divided into rounds
of M timeslots. In a given round, a user sequentially targets
the M best channels according to the result of SL(k) running
locally, with a given offset in {0, 1, ...,M − 1}, starting from
the channel with ranking equal to 1 plus the offset. This is
the TDFS variant employed in [8], DLF. Note that in DLF,
as the SL(k) statistics of the channels are recalculated after
each timeslot rather than after each round, and no channel is
excluded from candidacy to be selected at a given timeslot, it
may be possible for a channel to be selected more than once
within a round. However, in practice this scenario takes place
so sparsely that we can safely neglect it. We index the rounds
with n and denote the selected offset of a given user at round
n as s(n).

As an example, consider a network with 6 users, where
time is divided into periods of 6 timeslots. Then, a user with an
offset equal to 4 will target sequentially 5∗, 6∗, 1∗, 2∗, 3∗, 4∗,
where by k∗ we refer to the user’s estimate of the k-th best
channel based on the order of SL(k) local metrics. We depict
this scenario in figure 1, where the notion of user offset can
be better comprehended.

IV. REDUCTION OF OFFSET COLLISIONS UNDER
CHANNEL RANKING UNCERTAINTY

In a fully distributed setting with no message exchanges
between secondary users, it makes no sense to assume a
predetermined user ranking, which would translate in known
offsets. Thus settling into a configuration of orthogonal offsets
needs to take place through local offset readjustments triggered
by evaluation of collisions experienced in past timeslots. Offset
readjustment may be decided at regular intervals, conveniently
before each new round of M timeslots, or on the fly after
an event associated with one or multiple collisions occurs in
the user’s history. We adopt the former case, as on the fly
adjustment of offsets complicates synchronization of decisions.

The randomization policies used in [7] and [8] for offset
collision resolution are based on the principle ”if you collided
-even once- in the previous round of timeslots, then randomize
your selection among the M possible offsets for the next
round”. As we already mentioned, this is the equivalent of the
Learning-BEB algorithm [11] for settling stations into distinct
transmission slots. While this indeed ultimately leads to an



absorbing state where the users are settled orthogonally in the
M best channels, it does not yield the optimal convergence
rate [13].

Note that the efficiency of an offset collision resolution
has two facets. The first is detecting an offset collision with
the highest accuracy possible. Uncertainty arises from the fact
that a series of experienced collisions in the recent history may
not be due to actual offset collision with another user, but due
to wrong channel ranking estimates by the user itself or by
other users. As time advances and estimates become more and
more accurate, the occurrence of such events diminishes and
collisions are increasingly due to offset collisions.

The second facet of collision resolution is to apply a
smart randomization policy when readjusting local offsets. In
general, after a decision to adjust the local offset, a user must
make a selection for the next round given by a probability mass
function over all possible M offsets. It makes sense that users
which did not experience a collision in the previous slot should
retain their selection. The offset selection algorithm for users
which detected an offset collision will determine the speed of
convergence to an orthogonal offset configuration.

A. A threshold rule for offset collision detection

In an attempt to detect offset collisions with high accuracy,
while keeping the required computation overhead low, we
decided to employ a threshold rule based on the number of
collisions a user experiences in a round of M timeslots. Our
decision was motivated by an effort to balance efficiency with
complexity. More sophisticated and computationally complex
alternatives are briefly discussed in Section VI.

Intuitively, it makes sense that few or no collisions are an
indication that the user’s selected offset is unique and expe-
rienced collisions are due to erroneous estimates of channel
ranking. A lot of collisions are an indication of an offset
collision. Thus, if we set an appropriate threshold, we can limit
unnecessary offset adjustments. After extensive simulations
using a great variety of parameters (number of channels,
number of users, channel availabilities), we found a good
threshold to be approximately M/2, that is, half the number
of users. As any choice of the threshold involves both false
alarms and missed detections2, and those can have different
direct and indirect effects on the regret, we based our choice
on minimizing the mean regret observed.

We express the threshold as a multiplicative factor on the
number of users M and denote it as Thr, so our choice
corresponds to Thr = 0.5, while the value used in the
randomized algorithms in [7] and [8] is Thr = 0.

B. Persistent algorithms for fast offset collision resolution

In our study of the problem of smart resolution of offset
collisions, we revisited results from multiple access protocols
proposed for wireless as enhancements to CSMA/CA, espe-
cially those which focus on persistent algorithms. In our case,
imagine the extreme where the channel ranking is already
known by all the users and the only problem is for them to

2Please note that false alarms and missed detections in this context refer
to detection of offset collisions and should not be confused with sensing for
primary activity.

arrive at an orthogonal offset configuration. Then, as offset
collisions can be detected without errors, users could employ
the following simple algorithm. Initially, each user picks an
offset uniformly at random. Upon completion of a round with
no collisions, a user ”locks” in the selected offset for all
future rounds, irrespectively of potential offset collisions in
the future. On the other hand, a user that keeps colliding will
keep selecting an offset uniformly at random until it stops
colliding, at which time it ”locks” into the selected offset. This
is essentially the L-MAC algorithm from [13], with parameter
β = 1.

It is easy to understand that this simple distributed algo-
rithm leads to an orthogonal schedule very fast (see [13]).
The problem is that, as we argued, offset collision cannot be
detected with certainty. Therefore, we need to come up with
a less rigid scheme, where users are not permanently locked
into an offset irrespectively of future collision events. With this
requirement in mind, we examine two alternative policies.

The first one is essentially the L-MAC algorithm with
β < 1. If the parameter β is large enough, the effect of
”stickiness” to offsets used successfully in the past remains,
while keeping β strictly smaller than 1 ensures that repeated
offset collisions will trigger readjustment of offset. We tested
this approach and found values between 0.5 and 0.9 to yield
very good performance (with differences among them smaller
than 5%). For smaller values of β the per user regret was found
to be fairly larger. Note that the necessity to use a value of
β smaller than 1 does not derive from some transient fairness
motivation, as in [13], but is essential to avoid multiple users
from locking in the same offset.

The second approach we examined is more focused to the
structure of the problem. A user locks into its selected offset
after a round in which it does not detect an offset collision and
records its estimate of M best channels and their rank during
this round. In future rounds, if it detects an offset collision,
it cross-examines its current ordered list of M best channels
with the one it keeps in its records since the timeslot when
it locked into its current offset. If the lists differ, then the
user releases its offset lock. If the lists are the same, then the
user retains its offset, despite the offset collision detection.
In this way, we assure that once the users learn the M best
channels, settling into orthogonal offsets is relatively fast. Also,
we avoid having a nonzero probability (1− β) to switch from
a previously successful offset after a single offset collision
round.

Intuitively, we expect both algorithms to work significantly
better than non-persistent algorithms, due to the effect of
”stickiness” that they exploit. The results from the simulations
we conducted showed that they exhibit similar performance.
Therefore, we select the former one for our algorithm, as
it is fairly more simple. The combination of offset collision
detection, offset collision resolution and the DLF time sharing
structure with SL(k) learning constitute our proposed algo-
rithm, which we refer to as DLF-persistent. Its function can
be viewed in Algorithm 2.

V. PERFORMANCE EVALUATION

We conducted simulations to evaluate the performance of
our algorithms. We fixed the number of channels to 18. The



Algorithm 2 The DLF-persistent algorithm
Notation:
N : number of channels, M : number of users
ncoll(n): Number of collisions during n-th M -slot round
s(n): Offset selected during n-th M -slot round
s(0): Offset employed during initialization phase
p(n,m): Probability of selecting offset m (m ∈
{0, 1, ...,M − 1}) during n-th M -slot round
Thr: Multiplicative threshold for offset collision detection,
selected to be 0.5
β: Parameter controlling the degree of persistence, selected
to be 0.9
c(k): Channel ranked k according to the current state of
learning
θ̂i(t): Sample mean of channel i at slot t
ni(t): Number of samples of channel i at slot t
Xi(t): Availability (0 or 1) of channel i at slot t

Initialization:
Select s(0) uniformly at random
for t = 1 to N do

Select channel k such that k = ((t− s(0)) mod N) + 1
end for
p(1, k) = 1/M
Select s(1) according to distribution p(1, k)

Main Loop:
-At slot t during n-th M -slot round:
Using SL(k) specified in Algorithm 1, select c(k), where
k = ((t− s(n)) mod M) + 1

θ̂c(k)(t) =
θ̂c(k)(t−1)nc(k)(t−1)+Xc(k)(t))

nc(k)(t−1)+1

nc(k)(t) = nc(k)(t− 1) + 1

-At the end of n-th M -slot round:
if ncoll(n) > ⌊Thr ∗M⌋ then
p(n+ 1, s(n)) = βp(n, s(n))
p(n+ 1,m) = βp(n,m) + 1−β

M−1 , for all k ̸= s(n)
else
p(n+ 1, s(n)) = 1
p(n+ 1,m) = 0, for all k ̸= s(n)

end if
Select s(n+ 1) according to distribution p(n+ 1,m)

average channel availabilities were chosen equally spaced from
0.26 to 0.94 with 0.04 spacing. We varied the number of users
from 8 to 16 with a step of 2 and compared the per user regret
of different algorithms after 500000 timeslots, taking the mean
value of 50 simulations.

In particular, we compared the regret performance of
four algorithms: i) DLF with predetermined offsets (as a
benchmark) ii) DLF with random initial offsets and the offset
updating policy of [7], which we denote as DLF-rand, with
threshold Thr = 0, iii) DLF-rand with threshold Thr = 0.5
and iv) our proposed algorithm, DLF-persistent, with threshold
Thr = 0.5. The value of 500000 was selected so that even in
the worst policy (DLF-rand with threshold zero) the network
has enough time to converge in a collision-free operation where
regret follows the typical logarithmic pattern. Alternatively we
could also plot the leading constants of the asymptotically

Fig. 2. Comparison of Per User Regret after 500000 timeslots for: i)
preallocated offsets, ii) DLF-Rand with Thr=0, iii) DLF-Rand with Thr=0.5
and iv) DLF-Persistent with Thr=0.5. The number of channels is fixed to 18
with equally spaced average availabilities between 0.26 and 0.94, and we vary
the number of users from 8 to 16

logarithmic regret for the four algorithms, but we believe a
straightforward comparison of aggregate regret values is more
intuitive and useful for our purpose.

The results are depicted in figure 2. As we expected,
DLF-rand with Thr = 0 exhibits the worst performance. Its
regret for 16 users is about 30 times the regret of DLF with
preallocated offsets, with considerably more regret also for
fewer users. DLF-rand with Thr = 0.5 exhibits relatively good
behavior up to a certain number of users, but its performance
for 14 and 16 users is significantly higher than with preal-
located offsets. This shows that for a number of users up to
approximately 12, appropriate selection of the Thr parameter
can by itself yield significant benefits, however it is not enough
for larger numbers of users. Our proposed scheme, which is
DLF-Persistent with Thr = 0.5 exhibits very good behavior
independent of the number of users, with only slightly more
regret than that with preallocated offsets.

In figure 3 we get a closer look at the regret performance
of our proposed algorithm, DLF-persistent, in comparison with
DLF with preallocated offsets. In the same figure, we also
plot the performance of the second candidate algorithm for
offset collision resolution we mentioned in subsection IV-B.
As we can see, DLF-persistent performs slightly better than
the other candidate, besides being simpler to implement, thus
justifying our choice. It also performs very close to DLF with
preallocated offsets, essentially minimizing the effect of their
lack.

We must stress the fact that all the algorithms simulated
exhibit the optimal logarithmic order of regret. However, as
the number of users increases, and especially above 10 users,
the rapid convergence to an orthogonal offset configuration
achieved by our proposed algorithm translates into a very
significant reduction in per user regret.

VI. DISCUSSION

A. Alternatives to threshold rule for offset collision detection

The threshold rule based on the number of collisions
experienced during a round of M slots is clearly not the best
possible way to detect offset collisions. A more sophisticated
method would examine each collision event and estimate the



Fig. 3. Comparison of Per User Regret after 500000 timeslots for i)
preallocated offsets, ii) DLF-Persistent with Thr=0.5 and iii) the alternative
persistent scheme proposed in subsection IV-B. The number of channels is
fixed to 18 with equally spaced average availabilities between 0.26 and 0.94,
and we vary the number of users from 8 to 16

probability that the channel where the collision took place is
misranked, or some approximation of it, such as the probability
that the relative ranking between this channel and the one with
the closest sample mean is wrong. Bounds of these probabil-
ities, based for instance on Gaussian confidence bounds for
difference of means, could be used. Such methods correctly
assign a different weight on each collision event as to its
likelihood of being due to an offset collision. Additionally,
they provide robustness, as they can better detect offset colli-
sions, even in cases where the majority of the actual channel
availabilities are small and hence actual collisions might not
be detected due to refrainment from access. However, this is a
fairly more complex method, and simulation results show that
using the simple threshold rule we employed combined with
the persistence mechanism gives very good results. Therefore,
we leave it as future work to quantitatively assess the benefits
from using a more sophisticated rule for offset collision
detection.

B. On usage of common indices

An intuitively obvious extension of our algorithm would
be to use common indices for ranking the top M channels
at each user. Common indices rely on a globally agreed set
of channel identifiers, for instance corresponding to increasing
center frequency. The idea is that the user employs the statistics
gathered from its local learning procedure to decide which are
the best M channels, and then sorts these channels by common
index instead of by their statistics. This approach resolves cases
with ties in the expected availabilities of the M best channels,
and reduces the regret in cases with very close availabilities
among subsets of these channels. It is also better suited to the
nature of the problem, considering that under a time division
sharing policy the crucial objective is to distinguish the M
best channels from the rest, while the internal ranking among
them based on availability estimates becomes irrelevant.

There is however a caveat in using this approach. In
particular, the risk associated with using ranking by common
index for the M best arms is that a change in the set of M
best arms can cause multiple re-rankings of arms. This can
cause multiple collisions and possibly trigger a false alarm for
offset collision.

Fig. 4. An example demonstrating the risk of using ranking by common
indices. A single change in the M -best set of one user causes multiple
collisions despite different offsets

For instance, consider a network with 5 users and 10
channels (indexed {1, ..., 10}), and focus on two users, one
with offset equal to 0 and one with offset equal to 4, whose
common estimate of the 5 best arms during round n is the set
{3, 5, 6, 8, 9}. Suppose that at the next round n + 1 channel
10 makes it in the second user’s M -best set, replacing channel
3. Then, the entire common index based channel ranking for
that user changes and, while the two users have different
offsets, they may collide in up to four timselots of the 5-slot
round (depending on the actual availabilities of the channels
in the respective slots), which in turn will likely trigger a false
offset collision detection alarm. This scenario is depicted in
Figure 4. These chain reaction re-rankings that can be caused
by common index ranking are the drawback of using this
approach.

We verified through simulations that such scenarios are
indeed a cause of increased regret particularly in cases where
there are ties or close availabilities involving the actual M -th
best arm. On the other hand, if the ties or close availabilities
are away from the M -th best channel boundary, ranking
by common indices works fine, as expected, and yield the
expected performance benefits compared to ranking by sample
mean based estimates. There seems to be no straightforward
workaround for this problem, even with applying hybrid chan-
nel ranking schemes. We are working in further investigating
potential solutions that provide good performance for any set
of expected channel availabilities. It is possible that there exist
a tradeoff between robustness under any scenario and optimal
performance for specific scenaria.

C. Comparison with DSEE

We are aware that the work in [5], which is based on
DSEE, also addresses the problem of collisions among users,
when there is no prior agreement on user ranking. However,
this work relies on the assumption of a known lower bound
between the availabilities of the M -th best and the (M + 1)-
th best channel. This is a rather unrealistic assumption in an
environment with unknown channel statistics. Essentially, this
approach is exploiting the fact that a bound on the required
discerning ability of the algorithm is given in advance, so



that the extent of exploration does not rely on random reward
results.

Furthermore, in [5] learning is performed using only obser-
vations from the exploration period, a fact that decreases the
learning rate with respect to the case where all observations
are utilized. The benefit from using only observations from
the exploration period is that all users share exactly the same
estimations of the channel rankings, hence they share the same
estimated set of M best channels. Therefore, they can safely
adopt ranking by common indices in the exploitation period
without the caveat we discussed in the previous subsection. It
is clear that the additional requirement for simultaneous com-
mencement of the learning process by all users is particularly
crucial in this case.

D. Future directions

It should be clear that our proposed algorithm is applicable
not only in DLF with SL(k), but also to similar TDFS-based
distributed policies using other learning algorithms, such as
those from [1] and [3]. In fact, it applies to any learning
algorithm with sublinear regret, even if it is not order-optimal.
Indeed, we have not made any assumption regarding the
learning mechanism, but have only focused on detecting and
resolving offset collisions. Since the Lai-Robbins learning al-
gorithm [1] achieves the optimal logarithmic constant of regret,
we expect that applying our algorithm onto the framework of
[7], which builds around this algorithm, will actually yield
even better regret performance.

An interesting direction is to see whether the requirement
for all stations to commence their learning and access opera-
tions concurrently, implicit in this paper and all relevant past
work, is crucial for the performance of the relevant algorithms.
In this context, dropping the assumption of known number of
users M and instead having to estimate it on the fly seems the
first step for accommodating a varying user population. This
is a topic we intend to investigate further in our future studies.

VII. CONCLUSIONS

We examined fully decentralized algorithms for an oppor-
tunistic spectrum access network with M secondary users and
N > M channels with i.i.d availabilities. We enhanced the
performance of offset-based time division fair sharing policies
previously proposed in the literature, by focusing on limiting
offset collisions among users, based on feedback from the
collision history. We proposed a threshold rule for detecting
offset collisions and a persistent algorithm for accelerating
convergence to an orthogonal offset configuration. The com-
bination of these two techniques yields regret performance
close to the setting with preallocated offsets, as shown by
simulations with Bernoulli distributed channel rewards.
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