
Dishonest Reporting in Queue-Based Cross-Layer
Network Optimization

Dimitris Giatsios Iordanis Koutsopoulos Thanasis Korakis

University of Thessaly and CERTH, Greece

Abstract—Queue-based cross-layer optimization algorithms
have recently been a subject of intensive research in wireless
networks. Their purpose is to guarantee stable operation and
to achieve some form of fairness among users, whenever the
traffic demand exceeds network capacity. Despite the plethora of
work in this field, the scenario where one or more nodes declare
false queue backlog values in order to gain throughput advantage
remains unexplored. In this paper we examine this type of selfish
misbehavior, concentrating on a specific class of algorithms, the
so-called quadratic Lyapunov-function-based algorithms (QLA).
In particular, the effect of backlog misreporting on a single-hop
access network with contending stations is evaluated through
simulations. A simple framework for the detection of misbehaving
nodes is proposed, under the assumption that the access-point
is aware of the utility functions of the stations. The detection
approach exploits the fact that under QLA the throughput of
a node must be approximately equal to an “expected” value,
derived from the reported queue backlogs.

I. INTRODUCTION

Cross-layer optimization algorithms for wireless networks
have received much attention during the last decade. Use of
queue backlog or head-of-line delay information has been
proven to give throughput-optimal resource allocation algo-
rithms. To provide some form of fairness when the total traffic
demand exceeds network capacity, utility-based flow control
algorithms have been developed, which run on the nodes and
interact with the scheduling and resource allocation compo-
nent, in order to jointly maximize the aggregate utility. A class
of such cross-layer algorithms are the Quadratic Lyapunov-
function-based Algorithms (QLA), developed in [1], [2].

Despite the plethora of work in this field, a specific aspect
has been overlooked. It is assumed that all nodes truthfully
report their backlogs to the scheduling component. However,
a node has a selfish motive to misreport. See, for example,
Figure 1, where two wireless stations are transmitting traffic
to an access-point. The link capacities are time-varying and at
each timeslot the scheduler decides which station will transmit
based on the max-weight algorithm (see [3], [4]), that selects
the node with the greatest product of link capacity and queue
backlog. If the queue backlogs and the channel capacities have
the values depicted, the access-point will schedule station B
to transmit. If station A lies about its backlog declaring 20
packets instead of 10, it will be the one scheduled instead.

Fig. 1. Simple example of access network susceptible to misbehavior

In cross-layer architectures the typical approach for tackling
such behavior is through dynamic pricing techniques. A typical
example is the VCG mechanism (see [5], [6]), through which
an optimal strategy for a rational user is to reveal its true
utility function, but the algorithm complexity is prohibitive for
implementation. Schemes with prices determined by user bids
have been proposed in [7], [8]. In [9] dishonest reporting of
link capacity is examined and a heuristic with a linear pricing
function is proposed as countermeasure.

While pricing mechanisms are the usual approach for clean-
slate cross-layer optimization algorithms, detection-oriented
approaches have been proposed as amendments to existing
or readily implementable algorithms. See [10], for example,
where uncooperating users in multi-hop ad-hoc networks are
detected, or [11], where 802.11 MAC misbehavior is detected.

In this paper, we examine a specific type of selfish behavior
not explicitly studied before, to the best of our knowledge.
This is false reporting of queue backlogs in cross-layer opti-
mization with QLA. We focus on the case of cellular access
networks and evaluate the effect of misreporting on network
performance. We propose detection algorithms in the cases
of infinite traffic demand and arbitrary input rates, under the
assumption of knowledge of the utility functions.

II. NETWORK MODEL

We consider a network with N wireless stations and an
access-point, as in figure 2. We examine uplink traffic only,
as the type of misbehavior we study does not affect the
downlink. Each of the N links has a time-varying capacity
Ci(t). Arrivals Ai(t) at the transport layer of each node are
Poisson processes with averages λi(t). A flow controller at
each node determines the amount Ri(t) to be admitted to the978-1-4673-1298-1/12/$31.00 c© 2012 IEEE

Fig. 2. Network model

network layer during each timeslot. Unadmitted data is kept in
transport layer reservoirs with backlogs Li(t). Admitted data
enters network layer queues with backlogs Ui(t).

Only one station can transmit during each timeslot. The
access-point decides the station I(t) to transmit based on the
max-weight principle [3]:

I(t) = argmax
i=1,...,N

Ui(t)Ci(t) (1)

Whenever the vector of average arrival rates is within the
network capacity region, the above algorithm guarantees queue
stability [4]. To ensure stable operation when arrival rates
exceed the capacity region, the flow controllers must ensure
the admitted data rates are kept within the boundaries of the
capacity region. Furthermore, fair throughput allocation among
nodes must be guaranteed, where fairness is usually expressed
as maximization of the sum of utilities of the nodes. We
assume the utility functions gi(·) are smooth and concave.

In general, the network planner must solve the optimization

Maximize:
N∑
i=1

gi(ri) (2)

subject to: (ri) ∈ Λ, (3)

0 ≤ (ri) ≤ (λi), (4)

where ri is the long-term throughput of node i and Λ is the
capacity region, not known a priori for a wireless network.

Two algorithms satisfying these criteria have been proposed
in [1] for the cases of infinite and finite traffic demand
respectively. With the first term we describe the assumption
that all the nodes have always enough data in the transport
layer to be admitted to the network layer, so the constraint (4)
can be omitted. Dropping this assumption and allowing for
arbitrary input rates, (4) becomes active and the techniques
for solving the optimization problem are more complicated.

For infinite demand, the flow control algorithm is called
FLOW1 and works as follows. Each timeslot, the flow con-
trollers choose Ri(t) = r, where r solves the maximization:

Maximize: V g(r)− rUi(t) (5)

subject to: r ≤ Rmax
i , (6)

where Rmax
i is a burstiness constraint for node i and V is a

parameter determining the tradeoff between proximity to the
maximum utility sum and aggregate network congestion.

For finite demand, auxiliary variables γi(t) and virtual
queues Yi(t) are used in order to solve the optimization with
the extra demand constraint. The relative algorithm, called
FLOW2, works as follows. The amount of data to be admitted
at each timeslot is given by:

Ri(t) =

{
min{Li(t) +Ai(t), R

max
i }, if ηYi(t) ≥ Ui(t),

0, otherwise
(7)

The auxiliary variable γi(t) is calculated at each timeslot. In
particular, γi(t) = γ, where γ solves

Maximize: V gi(γ)− ηYi(t)γ (8)

subject to: 0 ≤ γ ≤ Rmax
i (9)

The virtual queues, initially empty, are updated according to:

Yi(t+ 1) = max{Yi(t)−Ri(t), 0}+ γi(t) (10)

The parameter η satisfies 0 < η ≤ 1 and affects a tradeoff
between system “learning time” and congestion.

III. MISBEHAVIOR PATTERN

The misbehavior pattern we examine is reporting of a false,
larger network queue backlog by one or more nodes. We
assume the selfish node constantly reports a backlog greater
than k packets than its actual backlog. Our detection approach,
described in the next section, is independent of the cheater’s
strategy, thus we adopt this trivial scenario here, for simplicity.

We performed simulations with MATLAB to evaluate the
effect of this behavior in the network. We considered 4
stations, using rounded Gaussian processes for link capaci-
ties (i.i.d. across timeslots). Utility functions are logarithmic,
gi(ri) = log(ri). The scheduler chooses the station to transmit
based on (1). We compare the throughputs and the average
backlogs of the nodes at steady state, when all nodes are honest
and when the first node constantly reports a larger backlog.

First we examine the case of infinite demand with use of
FLOW1. In figure 3 we see what happens when node 1 de-
clares a backlog greater than 10 packets than its true value. We
observe a dual performance gain for the cheater. It is increasing
its throughput and decreasing its time average congestion.
Honest nodes, on the other hand, suffer a deterioration of their
performance with decreased throughput and higher congestion.

For the finite demand case we distinguish between two
categories of nodes. The first, “non-starving nodes“, consists
of nodes whose arrival rates coincide with their throughputs, as
their demand is fully satisfied. The second, ”starving nodes”,
consists of nodes whose demand is not satisfied fully, their
throughput is less than their arrival rate. As the objective of
selfish misbehavior we examine is throughput increase, selfish
nodes obviously belong to the second category.

We simulated the scenario where nodes 1 and 3 are “starv-
ing” and nodes 2 and 4 are “non-starving” and tested the effect

Fig. 3. Infinite demand case: Throughput and average backlog of the four
nodes under normal operation and when node 1 misbehaves

Fig. 4. Throughput and average backlog of the four nodes for k =
0(normal operation), 10, 20 and 30. Nodes 1 and 3 are “starving”, nodes 2
and 4 are “non-starving”. Node 1 is the misbehaving node.

of node 1 reporting a larger backlog. In figure 4 we see the
effect for the cases where k = 0 (normal operation), k = 10,
k = 20 and k = 30. We observe that “non-starving” nodes
experience this behavior as time average delay increase, but
they see no drop in throughput. However, further increasing
k eventually leads to “non-starving” nodes becoming “starv-
ing”. Node 3 which is “starving” even in normal operation
experiences throughput decrease and congestion increase for
any k.

We note here that although we described the misbehavior
pattern for an access-point-based single-hop network, this
pattern is also applicable to multi-hop networks, where the
sources of the flows are potential cheating nodes.

IV. DETECTION METHOD

For the detection of misreporting behavior, we exploit the
structure of the flow control mechanisms of QLA.

A. Infinite traffic demand scenario

Let’s first examine the case of infinite traffic demand.
Solving the optimization (5) with respect to Ri(t) yields:

Ri(t) = min{(g′)−1(Ui(t)/V), Rmax
i } (11)

We have

lim
T→∞

1/T

T−1∑
τ=0

Ri(τ) = lim
T→∞

1/T

T−1∑
τ=0

µi(τ) (12)

where µi(τ) is the service rate of node i during timeslot τ .
This is a direct consequence of stability. At steady-state, (12)
is approximately valid for a large enough interval, so we have:

1/T
T−1∑
τ=0

Ri(τ) ≈ 1/T
T−1∑
τ=0

µi(τ) (13)

Substituting (11) to the approximation above yields

1/T
T−1∑
τ=0

µi(τ) ≈ 1/T
T−1∑
τ=0

min{(g′)−1(Ui(t)/V), Rmax
i }

(14)
Both hand sides of the above approximation can be calculated
at the scheduler side, given that it is aware of the utility func-
tions. Therefore, the detection scheme constitutes in checking
the precision of (14) over the interval T during steady state.

An alternative approach for the infinite demand case could
be for the access-point to run the cross-layer algorithm by
itself, through the use of virtual queue backlogs. Since it is
aware of the utility functions, it possesses all the information
needed. In this way, virtual flow controllers can be used at the
scheduler, and actual flow control can be decoupled from the
optimization and substituted by a trivial scheme such as

If Ui(t) < Cmax
i , then Ri(t) = Cmax

i − Ui(t) (15)

This approach is similar to that in [12], where placeholder bits
are used to reduce congestion, but different, since now the
entire optimization algorithm runs at the scheduler, “virtual
admitted packets” can be non-integers and no sophisticated
flow control algorithms have to be devised for taking into
account fluctuations around the mean backlog levels.

B. Finite traffic demand scenario

Detection in the case of arbitrary arrival rates is not as
straightforward. From (10) and (13) we see that at steady-state

1/T

T−1∑
τ=0

γi(τ) ≈ 1/T

T−1∑
τ=0

Ri(τ) ≈ 1/T

T−1∑
τ=0

µi(τ) (16)

At steady-state the constraint (9) can be droppped, so (8) yields

γi(t) = (g′)−1(ηYi(t)/V) (17)

Comparing (17) with (11) we observe that the “expected”
throughput is a function of the virtual queue backlog instead
of the actual backlog. However, the nodes report Ui(t) and not
Yi(t). The difference between the virtual and the actual queue
backlogs is random and depends on link capacities, arrival
rates of “non-starving” nodes and QLA parameters. Thus, we
cannot have accurate per timeslot virtual backlog information.

An idea is to use Ui(t) to approximate ηYi(t), that is,

µappr
i = 1/T

T−1∑
τ=0

min{(g′)−1(Ui(t)/V), Rmax
i } (18)

Fig. 5. Evolution of the quantity U(t) − ηY (t) for a “starving” and a
“non-starving” honest node.

The evolution of Ui(t) − ηYi(t) is depicted in figure 5 for a
“starving” honest node and a “non-starving” node. For “non-
starving” nodes we see that Ui(t) − ηYi(t) < 0. As g(·) is
concave, (g′)−1(·) is a decreasing function. Thus, (18) yields
an overestimation of the throughput. On the other side, for a
“starving” node, we see that Ui(t)− ηYi(t) is positive on the
average. This is not helpful for detection, since (18) yields an
underestimate of the throughput, creating an ambiguity as to if
this deviation is normal or due to misbehavior. The deviation
is not standard, but varies with channel and arrival statistics,
as well as with QLA parameters. A logical approach is to
estimate this deviation based on an honest “starving” node, add
this to the “expected” throughput and allow for some tolerance.
In practice, deviation for selfish users is larger than “normal”
deviation, so selfish nodes can be successfully detected.

Let’s consider a numerical example. We simulated a net-
work with two “starving” and two “non-starving” stations and
assumed that one of the “starving” nodes reports a backlog
greater by 5 packets than its true value, while the other is
honest. In figure 6 we see their observed throughputs and
approximations based on the reported backlogs. We see a
difference of 0.07 packets/timeslot for the honest node. Even
if we double this and set a threshold of 0.14 packets/timeslot,
the selfish node would still be detected as its deviation is 0.29
packets/timeslot. The only case where it avoids detection with
this rule is when reporting a backlog larger by only one packet
(the simulations showed a deviation of 0.12 packets/timeslot),
but then its throughput benefit is marginal (less than 5%). Our
observations from simulating various similar scenarios agree
that a non-negligible throughput gain always causes a signif-
icant deviation between “expected” and observed throughput.
Offline training is necessary, to account for the scenario where
all starving stations are trying to cheat. Development of more
sophisticated methods for the selection of the threshold will
be part of our future work.

C. Limitations of the detection approach

An important limitation of the approach is that the schedul-
ing component must be aware of the utility functions of the
stations. This can be satisfied if standard utility functions are

Node Observed
Throughput
(Packets/Timeslot)

Approx. based
on Backlog
(Packets/Timeslot)

Selfish 1.3067 1.0174
Starving honest 1.0969 1.0272

Fig. 6. Numerical example showing difference between “estimated” and
“observed” throughputs

used or with a priori negotiation of utility functions.
Another is with application to multihop networks, as the

assumption of a single access point per session ceases to exist.
As multiple nodes might be used for the first hop and the link
capactities from the source node to them might differ, it is not
always possible to keep track of the throughput of the source.

V. CONCLUSION

We examined the problem of dishonest queue backlog
reporting in cross-layer optimization for access-point-based
single-hop networks. We showed that a node has a motive to
report false backlogs, so as to increase its throughput. Through
examination of the flow control components of the quadratic
Lyapunov-function based algorithms used with infinite traffic
demand and arbitrary input rates, we proposed a simple
detection scheme for each case, which assumes knowledge
of the utility functions of the stations at the access-point.

ACKNOWLEDGEMENT

This work was funded by the research program “CROWN”,
through the Operational Program “Education and Lifelong
Learning 2007-2013” of NSRF, which has been co-financed
by EU and Greek national funds.

REFERENCES

[1] M. J. Neely, E. Modiano and C. P. Li, Fairness and optimal stochastic
control for heterogeneous networks, in Proc. IEEE Infocom, March 2005.

[2] L. Georgiadis, J. Neely and L. Tassiulas, Resource Allocation and Cross-
Layer Control in Wireless Networks, Monograph, NOW Publishers, 2006.

[3] L. Tassiulas and A. Ephremides, Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks, IEEE Trans. Autom. Control, vol.37, No.12,
pp.1936-1948, Dec. 1992.

[4] L. Tassiulas and A. Ephremides, Dynamic server allocation to parallel
queues with randomly varying connectivity, IEEE Transactions on Infor-
mation Theory, vol.39, No.2, pp.466-478, 1993.

[5] E. H. Clarke, Multipart pricing of public goods, Public Choice, 1971.
[6] T. Groves, Incentives in teams, Econometrica, pp.617-631, 1973.
[7] F. Kelly, Charging and Rate Control for Elastic Traffic, European Trans-

actions on Telecommunications, vol.8, pp.33-37, 1997.
[8] R. Johari and J. N. Tsitsiklis, Efficiency loss in a network resource

allocation game, Mathematics of Operations Research, vol.29, pp.407-
435, March 2004.

[9] G. Hosseinabadi and N. Vaidya, Selfish misbehavior in scheduling algo-
rithms of wireless networks, IPCCC 2010:214-221

[10] K. Graffi, P. Mogre, M. Hollick and R. Steinmetz, Detection of colluding
misbehaving nodes in mobile adhoc and wireless mesh networks, in
Proceedings of GLOBECOM 2007, pp.5097-5101.

[11] S. Radosavac, J. S. Baras and I. Koutsopoulos, A framework for MAC
layer misbehavior detection in wireless networks, Proceedings of ACM
Workshop on Wireless Security (WiSe) 2005, Cologne, Germany.

[12] L. Huang and M. J. Neely, Delay Reduction via Lagrange Multipliers
in Stochastic Network Optimization, Proc. of 7th Intl. Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), June 2009.

