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Abstract—The efficient utilization of emerging new technolo-
gies for the sake of implementing attracting and novel network
architectures is a major research challenge. As traditional ad-
dressing schemes seem to be rather inefficient to cope with
emerging Internet technologies, research concerning Content
Centric Networks (CCNs) has received a lot of attention by
the research community. CCNs are designed to treat content
as a primitive and therefore overcome the obstacles posed by
traditional addressing schemes. Utilizing Software Defined Net-
working (SDN) approaches can lead to a realistic implementation
of CCN scenarios. In this paper, we exploit the OpenFlow (OF)
technology, an SDN enabler, in order to efficiently create and
manage CCNs which are backward compatible with already
existing networking infrastructure. We evaluate our scheme by
using different load balancing policies, based on the actual
network state at every observation interval. The process is
completelly transparent to the end user, making our approach an
easy to integrate solution for all existing networking topologies.
QOur solution is implemented and evaluated under a real life
scenario, utilizing distributed testbed resources, consisting of the
NITOS wireless testbed and PlanetLab-Europe (PLE).

I. INTRODUCTION

The motivation behind this work is inspired from the novel
technology of the Software Defined Networking (SDN) [1]
and the emerging idea of Content Centric Networking (CCN)
[2]. SDN is a constantly growing networking approach that
decouples network control (learning and forwarding decisions)
from network topology (junctions, interfaces, and the way they
peer). SDN equipment consists of special switches dedicated
to the data forwarding plane, while the network control plane
is assigned to decoupled from the physical device controllers.
Data plane refers to the part of the routing process that
includes the forwarding decisions of the packets arriving
on the inbound interfaces, while control plane concerns to
drawing the network map. OpenFlow (OF) [3], [4] is the
most widely used enabler of SDN, with many networking
equipment vendors supporting its development. As a proof
of concept, Google’s Intranet has recently been completely
redesigned to run under OF. OF flexibility provides ease of
design and deployment of novel network architectures, even
those inspired by the CCN notion.

Content centric networks allow a user to focus only on the
requested content (data or services), rather than referring to
a specific host where that content will be retrieved from. A
widely used example of CCN is the Content Delivery Network
(CDN), which exploits the DNS protocol in order to map each

content request to one of the available servers, rendering the
user totally unaware of the actual content providing server. In
fact, the network serves content to users with high availability
and high performance, due to the existence of an underlying
large distributed system of servers deployed in multiple dif-
ferent sites in the network. The mapping of each user content
request to the most appropriate server is done in a transparent
way from the user perspective, based on a variety of criteria
including the server availability, process load and/or proximity.

In this work, we focus on the redesign of the underlying
network plane by exploiting OF resources, towards creating
a Content-Centric LAN (CCLAN), an easy to adopt solution
for content based delivery. The extended use of Virtual Pri-
vate Networks (VPNs), able to define LANs with expanded
coverage area all over the world renders them an excellent
example of a use case, where our proposed platform can be
easily integrated. VPNs form LANs with an abstract sense of
proximity, while the implicit geographical distances require
the deployment of multiple servers for the same content and
the application of various and diverse load balancing policies.
Inspired by the CDN approach, we introduce a mechanism
of content mapping based on the MAC layer and performed
with the OF switches, rather than using the less interactive
application-layer DNS based one.

The implementation and experimentation on the proposed
CCLAN is based on the federated environment of the NITOS
testbed [5] and PLE [6] resources. A CCLAN has been
deployed among a Europe-wide distributed system of PLE
computers and an OF enabled subnetwork of NITOS nodes,
featuring a TAP based VPN interconnection (operates with
MAC layer packets) among both sets of resources. As a
proof of concept, we evaluate our scheme under different
load balancing policies, that affect the selection of the most
appropriate content providing server. The experimentation
on a realistic setup with real measurements regarding the
performance and efficiency of the evaluated load balancing
policies is a significant effort towards the reliable comparison
among them.

The rest of the paper is organized as follows. In Section II
we introduce related work. Section III describes our proposed
scheme and Section IV presents the implementation features
in detail. Our evaluation of the overall solution is presented in
Section V, while Section VI concludes the paper.



II. RELATED WORK

CCN is recently gaining more and more respect from the
research community. Since its introduction [2], a major thrust
is evolving towards establishing a content centric Internet, as
it is prominent from the existence of many content oriented
research projects [7], [8], [9]. Many different aspects of
implementation have been proposed up to now, concerning the
CCN support by the current Internet infrastructure. However,
most of them require a costly redesign of the Internet backbone
or a complex setup of DNS servers in order to support content
based routing schemes.

More specifically, authors in [2] propose the adoption of
CCN based routers attached to current Internet backbone,
without interfering with the existing working setup. However,
these routers will be able to support only the link-state and
not the distance-vector routing protocols, while the authors in
[15] argue about the infeasibility of an Internet scale setup
of CCN based on current router hardware. In [10], authors
suggest either a novel protocol replacing IP or extending it,
introducing a new header field containing the content identifier.
This work has been further extended for the adoption of a new
transport layer protocol in [11]. However, the common feature
of the aforementioned architectures is the requirement for an
extended Internet redesign, making them inapplicable for the
time being.

On the other hand, CCN has come to life using the approach
of CDNs, without requiring complex low layer modifications
and relying on upper layer operations. In particular, CDNs rely
on a DNS based deployment [14] or transport/application layer
switches [12] to perform load balancing of content requests
over the Internet. Nevertheless, the inherent architecture of
CDNs renders any per packet load balancing policy inappli-
cable. Moreover, existing services that rely on IP rather than
URL to retrieve content cannot ensure “off-the-self” operation
with CDNs.

In order to deal with all aforementioned issues, we propose
an innovative scheme that uses IPv4/6 address to characterize
content. To implement our scheme, we involve OF in CCN. OF
has attracted attention from both the research community and
networking equipment vendors, since it enables experimenta-
tion with novel protocols using the networks we use everyday.
OF is highly customizable enabling packet forwarding based
on a variety of criteria except from the identification of the
MAC destination. In our approach, routing of contents can be
performed by using the unmodified TCP/IP Internet protocol
stack and the widely available OF network equipment. Finally,
we exploit the OF flexibility in order to apply different load
balancing policies on the content requests.

III. SCHEME DESIGN

A. LAN preliminaries

Current network architecture is based on the TCP/IP pro-
tocol stack, where the packet process in a computer or a
network device involves a separate subprocess in every layer.
The content is identified by a known and human readable URL,

which is translated through the application layer DNS to the
network address (IPv4/6) of the corresponding server. Then,
in order to map the network address to a specific physical
address (MAC), the Address Resolution Protocol (ARP) is
involved. The ARP operation is demonstrated in Figure 1(a).
When a client wants to retrieve the MAC address of a server
belonging to the same LAN, it broadcasts an ARP Request
including the known server IP address. Then, the server listens
this request, recognizes the including IP address as its own one
and responds with an ARP Reply that includes its own MAC
address. After this packet exchange, the client has all necessary
knowledge to initiate the content request. Simultaneously, the
network switches that establish the communication links are
appropriately updated to forward the content request and reply.

B. CCLAN presentation

The proposed scheme introduces a different operation of
a LAN, using appropriately configured OF switches instead
of Ethernet switches. The key novelty of our scheme is a
differentiated manipulation of the ARP messaging process. We
efficiently utilize the inherent intelligence of the OF switches
towards controlling and filtering of the ARP process.

In particular, the existing protocol stack remains unmodi-
fied, in order to ensure both backward compatibility and less
complex overall setup. Content identifying URLs are mapped
via the DNS protocol to specific IP addresses, that are able
to characterize content as well. Since we are talking about a
distributed setup of servers, that all offer the same service, an
IP address is no more a unique identifier for a host machine,
but is used to denote the services offered by that specific host
(or group of hosts). Therefore, a host machine may feature
more than one IP address; This is feasible using multiple
virtual interfaces. Moreover, the same IP address or content id,
shall be used by many servers that provision the same service.
Dynamic advertisement of available services from the content
servers has been further discussed in [16], [17].

Apparently, when using the proposed setup in a LAN, an
ARP Request shall trigger many ARP Replies, concluding in
a conflict at the end user that has initiated the ARP process.
However, the OF switches can upon request select which ARP
Replies will be forwarded, thus imposing implicitly many load
balancing techniques among the available content servers, as
it is depicted in Figure 1(b).

In summary, the proposed process is described as follows;
when a CCLAN end-point requests a content, that has been
previously matched to an IP address from the corresponding
DNS service, it issues an ARP Request, in search of the
requested content server MAC address. The OF switches that
intercept traffic in the LAN, will detect this ARP Request from
the initiating host and subsequently forward this packet to the
OF controller. The controller will examine the ARP packet,
and let it pass through the network, to all the destined content
servers with that matching IP address. The servers upon the
reception of the ARP Request, will issue back an ARP Reply,
reporting their MAC address to the host that initiated the
communication. However, as the ARP Replies pass through
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the OF switches, they are also sent to the OF controller,
which will enable the forwarding of the most appropriate
ARP Reply, indicating one of the available content servers
based on the applied load balancing policy. In order to ensure
no performance degradation over existing solutions, the OF
switches are programmed to forward the first ARP Reply they
receive, the time that our system is initiated, and subsequently
impose our policies for the next ARP replies that arrive at the
switch.

C. Load balancing policies

As it is already mentioned, the proposed scheme has been
evaluated by running several experiments when imposing
different policies that balance the client requests.

The first examined balancing policy adopts a per client-
request scheme (Figure 2(a)), that maps every new client
request to a fixed content server. This Client-based policy
chooses to forward the ARP Reply of the least loaded server
to any new client that initiates an ARP Request. If the client
is not new, then the same server always replies to this user.
Since we just use these policies only for evaluating our overall
scheme, we expect that this shallow approach will be able to
perform efficiently even in a system that the clients feature
different bandwidth requirements.

The second evaluated policy (Figure 2(b)) is examining
the overall load on the flows upon a switch, and tries to
load balance traffic based on this criterion. Stemming from
the statistics that every OF switch holds, the OF controller
periodically checks the statistics of the amount of data sent
through the existing flows and estimates the total load of traffic
which is handled from each server. This Load-based policy
tries to dispense traffic among the available content servers.
Whenever it detects an overloaded server, it switches the most
demanding content request to another less congested server.
This approach manages to efficiently distribute traffic among
all the available servers.

The last policy we decided to study, is a Proximity-
based one (Figure 2(c)), that assigns a client to the server
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that most quickly responded, focusing on a first-come, first-
served technique of forwarding the server ARP Replies. This
balancing policy may only be efficient enough in the case
of low network traffic. For the shake of this approach, we
assume that no additional delays due to network traffic can
occur during the ARP process.

IV. IMPLEMENTATION DETAILS
A. Experimentation platform

For the implementation of the proposed scheme of CCLAN,
a variety of software tools is used for setting up the in-
frastructure and managing the experimentation on top of
this. More particularly, an extended LAN spanning multiple
European countries is built, using VPN connections between
the participating resources, as it is illustrated in Figure 3.

Concerning the hardware engaged in our experimentation,
we used two widely used European testbeds; The NITOS
wireless testbed in Greece, and the PlanetLab Europe, with
resources distributed all over Europe. NITOS is an outdoor
deployed, large-scale wireless testbed, currently consisting of
50 operational WiFi nodes in the premises of a University of
Thessaly campus building, interconnected through two Pronto
3290 OF switches. PlanetLab-Europe (PLE) is the European
portion of the publicly available PlanetLab testbed, a global
facility, offering a total of 1000+ nodes worldwide. Each
node is a dedicated server, that runs components of PlanetLab
services, a setup that is very useful for our experimentation.
Both PLE nodes and NITOS server have access to the Internet
with a public IP address.

The NITOS server and the NITOS nodes are straightly
connected through two OF switches. Half of the NITOS’s
nodes are connected to one OF switch, while the rest are
connected to the second OF switch. The NITOS server is
connected only to one of the two switches, which are properly
interconnected through a single link. Using a private VPN
network, based on the OpenVPN application, we managed
to interconnect via Ethernet-bridging all the PLE resources
committed to our experiments, by placing them under one TAP
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tunnel. A VPN server is set up at the NITOS server, while
the PLE nodes are VPN clients, located at several different
countries spanning Europe. Bridging the NITOS server VPN
interface with the experimental interface that connects to one
of the two OpenFlow switches, all the resources operated in
our experiment have the illusion of being in one single LAN.
The OF switches behavior is adjusted from an external OF
controller, located at the NITOS server.

The topology of our experimentation is illustrated in Figure
3. The two physical OF switches are interconnected through
a single link, while one of the NITOS nodes behaves as a
third OF switch, with the aid of the Open-vSwitch (OvS)
software [18]. The three switches shape a tree topology,
where one of the physical OF switches is the root. The node
operating the OvS software features a wireless interface too,
able to bridge wireless with wired traffic. We focused on a
realistic experimental scenario, where the content clients with
bandwidth requests which do not exceed the wireless link
capacity are wireless connected to the OvS and the rest of
them are connected to the leaf OF switch. All the content
clients request services from geographically distributed content
servers across the Europe. Such a scenario could be applied
in a real world situation, such as in the case of the VPN
of a European institution, with moving users who should be
efficiently served by multiple distributed servers.

Finally, our overall experimentation is orchestrated by the
cOntrol and Management Framework (OMF) [19]. NITOS and
PLE testbeds are already federated by exploiting the federation
capabilities of OMF, thus allowing for large scale experimen-
tation such as the one for evaluating our scheme. Using OMF,
we configure transparently the experiment topology, assign IP
addresses, raise the OF controller and generate traffic requests.
Using OMF’s corresponding library, OMF Measurement Li-
brary (OML), we managed to get measurement aggregation
from measurement points defined in the applications running,
into a SQLite database, in order to assess the results of our
experiments.

B. OF controller outlines

The OF controller is the most essential part of our design
and is implemented using the Trema framework [20]. The OF
controller receives indications from the switches, every time
the switches receive a frame of an unknown flow. Then, the
controller sets up an appropriate flow entry in the OF switch,

(b) Load-based
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Load balancing policies

allowing the switch to forward immediately the following
packets without further controller involvements. The flows in
the proposed CCLAN are specified by the destination MAC
address and Ethernet type. If the Ethernet type is different
from ARP, the controller imposes the switch to forward the
packets in the same way that a normal switch does. In any
other case, the controller forwards or filters the ARP packets
accordingly, implementing one of the strategies that previous
Section III describes.

In the Client-based policy, the OF controller maintains an
appropriate hash table that maps each content identifier (server
IP address) to another hash table, which stores a mapping
between the clients and the servers. Each time that a new
ARP Request is initiated from a new client, the OF controller
checks the number of clients served by a specific server, and
chooses the one of the available ones with the least client
load. The controller is aware of all the possible servers in
the system, since it intercepts all the transmitted ARP Replies
(except for the initialization phase of our system, when the
controller chooses the server that responds first). Once the new
ARP Replies get transmitted, the OF controller will propagate
only the one of the previously selected server, filtering the rest
ones.

Concerning the implementation of the Load-based pol-
icy,which is harder to implement, a periodical check of the
statistics held by the OF switches is required. The main
differentiation of this policy compared to the first one, is the
extended data storage structure that holds more information,
except for the client-server mapping, while it enforces the peri-
odical reformation of this mapping. The client-server mapping
is done using the same building blocks that the previous policy
follows. However, after a specified time interval (10 secs for
our experiments) the OF controller collects the OF statistics
and estimates the current traffic load of each server, based on
the amount of total per port traffic. We remind that the OF
switches have an internal entry for each port, which maintains
its aggregate traffic load. Therefore, when the inspector OF
controller detects an overloaded server, it may reassign the
most demanding client from the overloaded server to the least
loaded one.

The last Proximity-based policy is the most straightfor-
ward implemented algorithm, since it does not require any
complicated data storage structure and the filtering decisions
are taken based on the first-come-first-served algorithm. More



Fig. 3.

specifically, the OF controller does not take into consideration
any traffic load statistics or number of clients per server, but
just forwards the first received ARP Reply, presuming that
it has been generated by the nearest located content server.
It can be easily concluded that this approach would be very
efficient in terms of response time, in case that the network is
not congested. However, in any other case, this specific policy
is actually ignoring any load balancing effort.

V. EXPERIMENTATION RESULTS

Our experiments are targeting at evaluating both the com-
pared policies as well as the validity of our CCLAN implemen-
tation. On one hand, we collected some accurate measurements
regarding the real performance of each implemented policy,
while on the other hand, we proved that our CCLAN imple-
mentation is working properly and can be efficiently integrated
in any production network. A total number of 15 nodes and
2 OF switches were committed to our experiment, 12 nodes
from the NITOS testbed (9 clients, 2 servers and one acting
as an OvS) and the two OF switches, and 3 nodes from the
PLE testbed. In order to differentiate the response times of
the server nodes that are located closely to each other, we
injected artificial delay on their incoming and outgoing links,
using the “netem” application for the NITOS nodes, and the
“netconfig” application for the PLE resources. Apart from the
some remarkable switch behavior that we noticed, on which
we elaborate later, the experimental results were expected.

For our experiments, we set up all the 5 servers in our
system with one IPv4 address, emulating that all of them
serve the same content. We used the “iperf” application for
generating traffic to the server nodes, and cleared all ARP
entries that the clients in our system where holding. Three
of our clients send out traffic of 5Mbps, three of 10Mbps
and the remaining three of 15Mbps. The clients that issue a
S5SMbps load (15Mbps in summary) are assigned to the OvS,
which operates at IEEE 802.11a mode, in channel 100, thus
ensuring no external interference on the wireless link. We
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assume that the DNS service responsible for mapping the
content identifiers to an IP address is running at a different
network segment, and thus we focus on the procedure after
this mapping. Each experiment was run 5 times, in order to
ensure the validity of our results. Our implementation proved
to be a solid one, since in every run we kept getting the same
results in the way client requests were allocated to the servers.

Concerning the evaluation of the Client-based policy (Figure
4(a)), the requests are always assigned to a corresponding
server, depending on the way that they arrive at the OF
controller. The fact that PLE 2 resource was more distant than
the other servers (ping delay from the NITOS server to PLE
2 had a 10ms extra overhead than PLE [ and 5 ms than PLE
3) resulted in the assignment of less client requests to it, in
some of our experiment runs. Since we have 9 clients and 5
servers, we were expecting 2 requests per server would have
been assigned, apart from one server that would serve only
one client. The experimental results validate our assumption.

Regarding the Load-based policy, we can see that the overall
load was almost equally distributed among the servers in our
system (Figure 4(b)). The measurement of this policy has
been the hardest to measure, since clients were continuously
moving from the different servers each time that the ARP
timeout expired, and an ARP request was issued from the
corresponding client. The ARP timeout was set to 10 seconds
for our experiments. The total aggregate throughput that each
client has transmitted was measured by summing up the total
bandwidth that the servers have received from each one.

Finally, concerning the third Proximity-based policy, all the
requests were assigned to the most proximate server, the one
operating on the NITOS side (Figure 4(b)). Remarkable is a
switch dependent behavior that we observed when evaluating
this policy. Since that we always select the server that has the
least ARP response time, we would expect that the similar
response times of the NITOS side servers would have resulted
in the overall load to be balanced between these two servers.
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Fig. 4. Load balancing comparison among the three policies

However, after adapting our approach, we repeated the exper-
iments by using only NITOS nodes as content servers. The
results we got were similar, and after injecting delays on the
outgoing links of each server we concluded the following; the
switch scans the port serially based on their port identification
number. Therefore, if the ARP Replies arrive at the same time
(or within a time interval that the switch is not aware of, the
switch will assign the requests based on the port identifier.

TABLE I
AVERAGE RESPONSE DELAY COMPARISON

Default ARP process
CCLAN ARP process

3.8 ms
8.5 ms

Concluding our evaluation, noteable are the extra delays
that our OF based system may impose in the ARP process.
We managed to measure the OF overhead that was imposed
on our scheme, after sniffing ARP packets that were using our
policies or the default ARP process. Our results show that our
process was suffering from an extra 3-5 milliseconds delay,
during the ARP process. The average delay we measured for
each ARP process is presented in Table I. This happens due
to the decoupled nature of the OF controller from the physical
switch, and the extra communication overhead that is imposed
between the controller and the switch for every unknown flow.
However, the results from our setup show that apart from
this initial mere overhead, no other degradation in the overall
system performance was imposed.

VI. CONCLUSION

In this paper we propose and implement a content-centric
network architecture for LANs, inspired by the widely used
OF technology and the insights behind the CCN approach. We
designed and implemented three load balancing policies, con-
sidering all possible desirable features that several applications
may require. We analyzed the performance of these policies
in terms of both load balancing and time response. We intent
to extend the current work towards two directions: The first
one is to apply the content-centric logic in more extended
networks, approaching the limits of the Internet. The second
one is to analyze further the evaluated policies, researching
deeper in the appropriate tuning of their several configuration
parameters, as well as to propose even more sophisticated
policies.
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