
Forging Client Mobility with OpenFlow:
an experimental study

Nikos Makris∗†, Kostas Choumas∗†, Christos Zarafetas∗†, Thanasis Korakis∗† and Leandros Tassiulas†‡
∗ Dept. of ECE, University of Thessaly, Volos, Greece
† Informatics & Telematics Institute, CERTH, Greece

‡ Dept. of ECE, Yale Institute for Network Science, USA
{nimakris, kohoumas, hrzarafe, korakis}@uth.gr, leandros.tassiulas@yale.edu

Abstract—The wide proliferation of IEEE 802.11 compatible
devices and the provisioning of costless Internet connectivity
in most cases, have created fertile ground for investigating
seamless client mobility and handoff management from a cellular
technology to any wireless access point available. Although
handoffs and client mobility are currently addressed by the IEEE
802.21 standard along with mobility management protocols such
as Mobile IPv6, yet no remarkable efforts exist for the wide
deployment of such solutions. Moreover, the adoption of such
architectures requires considerable changes in the mobile node’s
networking stack. In this work, we propose a Software Defined
Networking technology inspired scheme for managing client
mobility among heterogeneous wireless networks, by adopting
changes only on the network edges. Our solution is compatible
with the existing IPv4 and IPv6 addressing solutions. By em-
ploying the OpenFlow technology on the border of our network
with the Internet, we manage to keep both ends of the network
aware of any topology changes, and thus preserve any already
established connections, resulting in a seamless handoff process.
We evaluate our technique in a real network setup, by employing
WiFi and LTE technologies and benchmark it using higher layer
protocols with multi-homing features, namely Stream Control
Transmission Protocol and Multipath TCP.

I. INTRODUCTION

The low cost and rapid deployment of IEEE 802.11 compat-
ible networks has paved the way for the penetration of multi-
homed network devices in the market which support multiple
interfaces; from smartphones with WiFi interfaces comple-
mentary to 3G or 4G cellular ones to smart security systems
using WiFi for their primary wireless connection along with
a cellular network for backup connectivity. Nonetheless, the
mobile operators who provision the cellular networks almost
always incur extra costs when using the network for data
connections. Although the cost of using such services has
significantly decreased over the past years, it is still a notable
source of revenue for the mobile operators.

Nevertheless, managing a client’s mobility among hetero-
geneous technologies is not a simple task. In the case of
horizontal handoffs, where the mobile user moves among
homogeneous networks served by the same authority, pre-
serving the established sessions is managed by a Mobility
Management Entity (MME). Examples of such processes in
the LTE technology is the utilization of the S1 interfaces
between the base stations and the Enhanced Packet Core (EPC)
network, or the X2 interfaces for the coordination among the
base stations involved in the handoff process.

In the case of vertical network handoffs, the different
authorities involved make the uninterrupted handoff procedure
a challenge, regarding the established network sessions and
the way that will be represented over a different access
network. Methods similar to the horizontal handoff process
are applicable, like for example in [1] where the authors
exploit a scheme for the interconnection of the WiMAX ASN
Gateway with the 3GPP UTRAN. However, these methods
are solely restricted to a coordination of the access network
gateways, which applied in a real world environment will re-
quire contracting among the involved network operators. These
solutions do not apply for the case of the widely available
WiFi networks, commonly found in an urban environment and
provisioned even by individuals, which could be exploited for
the maximization of the total network capacity.

Therefore, managing vertical handovers (VHOs) in a seam-
less way, seems to be a real challenge to cope with. To this
aim, the IEEE 802.21 standard [2] aims to pave the way
for a seamless roaming process among the available access
networks. It introduces extensions to the existing network
stack, which support seamless connectivity across different
Radio Access Networks (RANs). Nevertheless, mobility is
managed by higher layer solutions, like Mobile IP or the
Session Initiation Protocol (SIP) [3].

In our work, we realize seamless vertical handoffs by man-
aging them only on the network edges, meaning the wireless
clients and the destination servers. By exploiting a Software
Defined Network (SDN), created using the OpenFlow technol-
ogy, we are able to accomplish VHOs and keep the ends of the
network informed of the changes in the underlying network
topology. For our evaluation, we consider the network beyond
the access network as a “black box” where we do not apply any
changes. We evaluate our technique by collecting performance
measurements regarding the handoff process, and compare it
against existing multi-homing solutions which can facilitate
seamless handoffs, in a real testbed setup.

The rest of the paper is organized as follows: Section II de-
scribes the existing protocols, standards and related solutions
for supporting VHOs. Section III presents the architecture of
our framework. In section IV we present our real testbed setup,
while in section V we showcase our experimental findings and
benchmarking results of our solution. Finally, in section VI we
conclude.

II. RELATED WORK

As multi-RAN access is a key factor to seamless Internet
connectivity for mobile users, several protocols have been
introduced in order to preserve any established connections as
a client roams in areas with dense network coverage. Different
protocols exist at different layers of the OSI stack which offer
seamless connectivity. One of the most outstanding is the IEEE
802.21 standard, for Media Independent Handovers [4], able
to handle connections to/from IEEE 802.3, 802.11, 802.15,
802.16, 3GPP and 3GPP2 networks. A full protocol suite has
been defined, for managing subsequent to handoff procedures,
like authentication and authorization in the new target network.
Nevertheless, since its standardization in 2009, no remarkable
deployments of the technology exist. The existing open source
solutions, like OpenMIH [5] and ODTONE [6], provide the
Service Access Points (SAPs) for the integration of network
managers and higher layer mobility solutions [7].

Prior to IEEE 802.21, Mobile IPv4 and Mobile IPv6 have
been proposed and standardized with RFCs 4721 [8] and 5944
[9] respectively. Mobile IP (MIP) can constantly identify a
mobile client with a permanent IP address, although the client
might be using different access networks. Preserving the same
address ensures that the connections are not broken in case
of a handoff. The MIP protocol defines a home address and
a care-of address as follows; the home address is used to
associate the user with a home predefined network, while
the care-of address is the one identifying the node’s current
network. In case that the care-of address changes, the mobile
node communicates these changes to a home agent (using its
home address) and establishes a tunnel connection to the home
agent for achieving seamless connectivity to the destination.
Open source implementations exist for the MIPv6 protocol,
compatible with the recent UNIX system release. For example,
umip [10] is executed as a user space service for handling and
optimizing a handoff, by establishing IPsec tunnels between
the home agent entity and the mobile node.

As the available network interfaces on a network node have
multiplied, several protocols have been standardized which
offer multi-homing capabilities. Although such protocols do
not target directly in managing handoffs, they can be efficiently
utilized for performing seamless VHOs, even more efficiently
than the MIP alternative [11]. The two most outstanding
protocols of this category are the Stream Control Transmission
Protocol (SCTP) [12] and the Multipath-TCP (MP-TCP) [13]
protocol, operating at the transport layer of the OSI stack.

The SCTP protocol has been considered as an alternative
to the TCP protocol operation, optimized for wireless tech-
nologies. It is aiming at alleviating the Head of Line blocking
effect, imposed by the operation of the varying Congestion
Window of TCP over a wireless technology, by establishing
multiple streams within one association between the two
traffic exchanging entities in a network. Nonetheless, SCTP
is supporting multi-homing; an SCTP socket connection binds
over several network interfaces. One interface is used as the
primary and whenever the traffic cannot reach its destination
through it, traffic is routed through one of the rest interfaces.

OpenFlow
bridge

Fig. 1: The client architecture that we adopt; all the available
interfaces are placed under a single bridge instance which all
the applications interface

The backup interfaces are constantly investigated about their
connectivity, by means of a heartbeat mechanism, based on
a predefined interval. Since the SCTP socket connection is
responsible for delivering the traffic to the application layer,
the process using the socket remains totally agnostic of any
changes, in case of a handoff [14].

Similar to SCTP, MP-TCP can establish multiple con-
nections over multiple interfaces, while the application is
presented with a simple TCP connection. Kernel implemen-
tations of MP-TCP can ensure backwards-compatibility with
the existing protocol stack. MP-TCP can be configured for
either establishing multiple connections to an end-point, and
thus increasing the total network capacity, or using the rest of
the connections as redundant backup links. The backup mode
can be efficiently used to provide successful management of
handoffs in the environment that we describe [15].

On the other hand, OpenFlow technology has paved the
way for innovative usage of the resources in a network,
by providing a highly configurable API to the network ad-
ministrator. Although OpenFlow was initially targeting wired
networks, innovative applications can be built leveraging it
in wireless networks as well. Authors in [16] argue about
the applicability of OpenFlow enabled wireless networks and
their capabilities for managing seamless handoffs. In [17]
an OpenFlow controller is used to build an experimental
testbed for performing handoffs among different wireless and
wired technologies. However, the solution relies on complex
configurations, leaving out an Internet scale setup, while no in-
dications of the achieved performance are provided. Similarly,
[18] and [19] employ the operation of OpenFlow enabled WiFi
APs for enabling a seamless roaming experience among them.
Nevertheless, all these works are either not applicable in an
Internet scale setup, or require controlling the target networks
via OpenFlow. In this work, we enable OpenFlow access only
on the mobile node and the receiving terminals, thus leaving
the operator provided networks completely unchanged and
providing a universal solution that is directly pluggable on
any contemporary network.

III. OPENFLOW BASED HANDOFF CONTROL
ARCHITECTURE

The designed framework aims in creating the environment
where a mobile client can constantly change the access tech-
nology used, while the established connections are preserved.

The applications running on top of our framework shall always
remain agnostic to any network changes. To this aim, we
employ the OpenFlow technology in order to establish custom
flows at the network edges, which alleviate any handoff effects
on the already established connections.

During a handoff, network address changes take place at
the mobile host, which break the established connections if
no proper management is applied. These changes are induced
by the different gateway used by each RAN, or by the NAT
process that is always present before the traffic is routed to
the Internet. Therefore, a proper coordination scheme has to
be employed among the involved RAN providers that would
enable the client to be discovered using the same address
information as was happening before the handoff. Neverthe-
less, such a scheme would involve contracting among different
network providers. With our proposed scheme, the changes are
handled at two points; on the client that performs the handoff
and just before the traffic reaching the destination server.
By using the OpenFlow technology, we are able to establish
custom flows on a network switch, by mangling the exchanged
traffic accordingly so as the connections are not dropped. From
here on, we refer to our framework as OpenFlow Handoff
Control (OHC) and we describe the algorithms applied at the
mobile client and the destination server of the network.

A. Mobile Client Framework

The key for applying our algorithms relies on creating
virtual OpenFlow enabled switches. To this aim, on the mobile
node we employ the architecture illustrated in Figure 1; we
place all the available networking interfaces in a single switch.
By relying on the Open-vSwitch framework [20] for the
creation of our switches, the switches residing on the mobile
node are OpenFlow enabled. The Operating System on the
mobile node interfaces only the bridge device and uses it as
the default interface for any outgoing/incoming traffic from
the mobile node. The controller that is configuring the flows
on this virtual switch is in charge of selecting the appropriate
southbound interface (e.g. WiFi, LTE) for exchanging traffic.

The switch device that the node interfaces bears a single
IPv4/v6 address in the network, which remains unchanged,
and is used as the reference IP address for establishing socket-
based connections in the network. Nevertheless, as the mobile
user is moving from cell to cell (of even different access
technologies), it is quite common that a network DHCP server
will assign a new IP address to the network interface of the
mobile host. Therefore, since the mobile node shall remain
agnostic of any topology changes, the network controller is
also in charge of initiating the DHCP process and learning
the network addresses which will be used in the new network.

Apart from the information gained by the DHCP process,
knowledge about the available next-hop neighbors is required
regarding their MAC layer configuration. To this aim, we need
to intercept and generate our own ARP protocol messages, in
order for the controller on the mobile node to be fully informed
of the underlying network topology and present the user with a
completely seamless experience. The controller creates ARP

Algorithm 1 OHC - Client Side Flow Control
1: if Inside the Coverage Area of an available Network then
2: Associate to the Network
3: Initiate and intercept the DHCP process
4: Flood all ARP packets
5: Collect ARP replies of the next-hop destinations
6: For each received ARP request, send an ARP reply
7: end if
8: if Handoff is instructed then
9: Send Handoff indication to the server side

10: for all Outgoing Packets do
11: Change the SRC-IP to the selected intf IP
12: Change the DST-MAC to the gateway MAC
13: Change the SRC-MAC to the selected intf MAC
14: end for
15: for all Incoming Packets do
16: Change the DST-IP to the bridge IP
17: Change the DST-MAC to the bridge MAC
18: Change the SRC-MAC to the selected intf MAC
19: end for
20: end if

messages in the background of its operation and exchanges
them with the associated interfaces.

Our goal is to create the illusion to the mobile node
applications that the underlying network is interfaced by
using a single IP address. The network interfaces (WiFi and
LTE) are running their own driver instructing the selection of
the network; for WiFi the selected network is the one with
the maximum Received Signal Strength (RSS) and the LTE
network depending on the network allowed to access defined
by the SIM card configuration. As the node is moving across
different networks, the low level drivers running on the node’s
kernel space instruct any potential network changes (e.g. from
one Base Station to another). For ensuring that the packets
sent over the selected network access technology are properly
formed, we apply Algorithm 1. The algorithm ensures that
the packets bear the correct IP and MAC addresses for the
network that will be used as a gateway, and that the packets
which are received over the interfaces are formed correctly
before delivering them to the initiating application.

B. Server Side Framework
The respective changes for adopting our framework have

to take place before the traffic is delivered to the destination
application. Although different processes take place for routing
the packet received from each access network (WiFi, LTE),
they all normally share a common point; they all route the
information based on public IP addresses allocated to each
client, or they use a NAT process on the border of their con-
nection with the Internet to translate the clients’ IP addresses
to other ones (possibly private to public and more applicable
to the IPv4 schemes). This fact has to been taken care of at
the server side when the mobile node is performing VHOs, as
each one of the technologies used is represented by a different
set of source IP address and source port at the destination.

Algorithm 2 OHC - Server Side Flow Control
1: if Handoff Indication is Received then
2: Extract SRC MAC, IP and Port
3: Monitor SRC IP and Port for every incoming packet
4: if TCP packet then
5: Monitor packet Seq. No.
6: end if
7: end if
8: if packet belongs to new flow then
9: if Packet is TCP then

10: Monitor Seq. No. && port number
11: if Seq. No. == Expected Number then
12: Packet Belongs to Handoff Flow
13: end if
14: end if
15: else
16: if SRC MAC, SRC IP, SRC PORT are equal to the

OHC message then
17: Packet Belongs to Handoff Flow
18: end if
19: end if
20: if flow is a Handoff flow then
21: for all Incoming Packets do
22: Change SRC IP, PORT to the establ. session

params
23: end for
24: for all Outgoing Packets do
25: Change DST MAC, IP and PORT matching the

handoff flow
26: end for
27: end if

Therefore, in order to cope with the address overloading
issue, meaning that the IP address of the mobile host is
identifying not only the host but its location as well, we create
a simple representation for the mobile host at the receiving
end. The process that we adopt for resolving this issue is
similar to the policy used at the mobile node; we rewrite
the IP addresses and source ports on the packets just before
reaching their end point, thus keeping the established sessions
uninterrupted, as indicated by Algorithm 2.

Nevertheless, discovery of the new network parameters
(address and source port assigned by the NAT process) requires
a new approach that will employ inspection of the packets
received before establishing a new flow, subsequently to the
handoff process. To this aim, we use a simple procedure for
identifying the new network parameters; prior to performing
the handoff, the mobile node controller communicates this
event to the server side controller. This message is a stan-
dard TCP message send over the new interface that will be
used after the handoff procedure. Upon reception of such an
indication message, the server side extracts the information
entangled with the new network path (SRC MAC, SRC IP,
SRC Port) and starts monitoring the received packets in terms
of their source port number and source IP address. In case

that the traffic is TCP, the transport layer headers bear a
sequence number. By monitoring this number, whenever a
packet belonging to an unestablished flow arrives, we can
deduce that the flow is a handoff flow. In this case, inspecting
only a single packet is enough for extracting the appropriate
information for establishing the new flows.

IV. TESTBED SETUP

For the evaluation of our OHC framework, we choose to
implement our solution for managing the handoff process
in a real network. We performed all of our experiments in
the NITOS indoor wireless testbed, by using the majority
of the technologies provided to the experimenters. NITOS
[21] is a key testbed in the Future Internet Research and
Experimentation (FIRE) initiative in Europe, consisting of 50
outdoor prone to RF-interference and 50 indoor RF-isolated
nodes deployed at the premises of University of Thessaly
campus building. The rich ecosystem of resources provided by
the NITOS testbed is exploited in our setup; we use nodes as
wireless Access Points, nodes to connect as wireless clients,
one LTE femto-cell and the respective EPC network as our
small cell solution and one OpenFlow switch for the network
reconfiguration at the server side of our experiments.

The topology that we employ for the experiment setup is
depicted in Figure 2. We use one node as a mobile station,
with one WiFi and one LTE interface for studying the handoff
management mechanism. A second node is used as a WiFi AP,
using an Ethernet connection to the experimental OpenFlow
enabled network. The installed EPC network, behind the LTE
access network is able to route the traffic arriving at the PDN-
GW component to this experimental network as well. Finally, a
third node is playing the role of the server receiving the traffic
stemming from the mobile node. The nodes are high-end PCs,
featuring Core i7 processors and 4GBs of RAM, while they
are using the 3.14.22-squeezemptcp kernel. The femtocells
are commercial ones by ip.access, operating in band 7, with
a center frequency of 2655 Mhz (EARFCN equal to 3100),
channel bandwidth of 10Mhz and transmission power equal to
15dBm, while we are using the provided services to configure
them appropriately [22]. The RF-isolated testbed provides us
ideal environment conditions for our experiments; for all of
the experiments we logged RSSI and RSRP values for the
LTE network equal to -53 dBm and -76 dBm respectively.

On our mobile node we use Open-vSwitch (OvS) for our
bridging solution, and enable its control from an OpenFlow
controller residing on the same machine. We employed the
Trema framework [23] as our solution for implementing our
OpenFlow controller. For our experiment setup, we use our
controllers to setup the flows for the two different involved
datapaths; one on the mobile node (on the OvS bridge) and
one on the hardware OpenFlow switch of NITOS, mangling
the traffic destined to/from the server side of our experiments.

For the operation of the SCTP protocol, we used the SCTP
kernel module, whereas for the MP-TCP protocol the MP-TCP
enabled kernel provided by [24]. In order for these solutions
to be comparable to the one we propose, we minimize any

Fig. 2: The OpenFlow Handoff Control (OHC) architecture that we use to facilitate seamless VHO; the changes that we adopt
are only on the borders of the access network, leaving the routing decisions taken at each network provider’s site unchanged.

delay of the network discovery, association and authentication.
Therefore, for all the four different solutions that we examine
(OHC, MIPv6, SCTP, MP-TCP), we ensure that they are
already connected in all the under examination networks.

For the collection of our results, we used the OMF Mea-
surement Library (OML) [25]. OML provides an API to
the experimenter for collecting measurement streams from
any application which is running over the network. For the
collection of our measurements, we extended TCP, UDP and
SCTP client/server implementations to collect measurements
regarding the delay of consecutively generated messages and
total achieved throughput. In the next section we showcase
some of our experimental results.

V. EXPERIMENTAL EVALUATION

We include two different types of experiments in our
evaluation: 1) we initially present some benchmarking results
of our OHC framework, in terms of performance overhead and
degradation that it incurs to the network operation, since it in-
cludes extended packet mangling before delivering the packets
to the final recipients (client/server), and 2) we compare it with
SCTP and MP-TCP. The nodes that we use are completely RF-
isolated and static, so we expect that the rate control algorithms
running for each technology allocate the same rate for every
experiment. For the experiments using TCP, the congestion
algorithm is set to Cubic. The experiments using MP-TCP
employ the fullmesh path manager, as our experiments have
showed that it outperforms other available solutions in the
MP-TCP enabled kernel [24] like the binder algorithm in
case of consecutive handoffs. Finally, for the case of the
SCTP experiments, we present experiments using different
heartbeat intervals, namely 500 msecs and 1500msecs. Setting
the SCTP heartbeat interval does not incur any better network
performance for our setup, since SCTP exploits the same
network buffers for the data and control packets that it sends.

A. Benchmarking of OHC

For the first set of experiments, we measure the overhead in
the handoff process imposed by the OHC rewriting functions.
To this aim, we initially measure the achieved throughput

performance for the different access technologies involved.
Since the maximum achieved throughput of the under inves-
tigation wireless technologies requires less processing power
for handling the incoming packets, we choose to engage a
Gigabit wired link for our benchmarking as well.

The results measuring the achieved throughput with and
without the OHC scheme, which mangles the packets at the
two network edges, are depicted in table I. The results clearly
indicate that for the rest of our experiments, the OHC scheme
induces no overhead for the network operation, since the
achieved throughput for all the cases is almost the same as
if no packet mangling was taking place.

TABLE I: Throughput achieved with/without OHC

Technology Throughput with
OHC

Throughput with-
out OHC

Ethernet 941,44 Mbps 941,45 Mbps
WiFi 24,08 Mbps 24,08 Mbps
LTE 19,57 Mbps 19,55 Mbps

A second set of benchmarking results can seen in figure
3a. We focus on the throughput and delay of consecutive
messages, when using our scheme to send TCP and UDP
traffic. The messages sent have size of 1420 bytes and are gen-
erated constantly at the mobile node. Handoffs are instructed
to happen every 30 seconds. For the first value measured and
depicted on the diagram, the mobile node uses WiFi and at
30 seconds switches to LTE. As we can see, TCP generates
packets with a larger interval of approximately 0.3 msecs
when using WiFi technology and 0.45 msecs when using
LTE. On the other hand, UDP has delays of approximately
0.2 msecs when using WiFi and 0.3 msecs for LTE. These
measurements result from the non-blocking nature of the UDP
socket implementation, contrary to the TCP one. Although
UDP sends more packets over the selected network, the
achieved throughput is similar for both protocols. This is
illustrated by the total number of datagrams lost for these UDP
experiments (63,27%), as shown in table II.
B. Evaluation against other solutions

For the second set of experiments, we are employing the
LTE equipment available in NITOS. Every experiment that

0 40 80 120 160 200
0

0.3

0.6

0.9

1.2

Time (sec)

D
e

la
y

 b
e

tw
e

e
n

 t
w

o
 p

u
ll

s
 (

m
s

e
c

) OHC−TCP

OHC−UDP

(a) Delay of consecutive messages for OHC. Handoffs happen
every 30 secs.

0 40 80 120 160 200
11

14

17

20

23

26

Time (sec)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

OHC−TCP

OHC−UDP

(b) Throughput achieved by OHC. Handoffs happen every 30
secs.

Fig. 3: Benchmarking of OHC framework with different types of traffic.

1 2 5 10 30
0

0.5

1

1.5

2

2.5

3

3.5

4

D
e

la
y

 (
m

s
e

c
)

Period between two consecutive handoffs (sec)

OHC−UDP

OHC−TCP

SCTP−1500

SCTP−500

MP−TCP

(a) Average handoff delay for the different under evaluation
protocols for handoffs every 1, 2, 5, 10, 20, 30 secs.

1 2 5 10 30
0

5

10

15

20

25

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Period between two consecutive handoffs (sec)

OHC−UDP

OHC−TCP

SCTP−1500

SCTP−500

MP−TCP

(b) Average throughput measured for the different under evalu-
ation protocols for handoffs every 1, 2, 5, 10, 20, 30 secs.

Fig. 4: Evaluation of our framework against other solutions.

we are conducting are again with a resolution of 10 times.
In Figure 4 we present the indicative results for SCTP with
heartbeat interval set to 500 msecs and 1500 msecs, and MP-
TCP, when executing experiments with a handoff decision.
In Figure 4a, we can clearly see that TCP is adapting faster
compared to SCTP to the new network topology. The packet
generation delay of SCTP is higher but constant for any
network used, compared to TCP and OHC framework. This
relies on the implementation of the SCTP sockets in the UNIX
kernel, which seem to be outperformed by the TCP ones. On
the other hand, although MP-TCP is able to achieve almost the
same delays with TCP when no handoff happens, in the case
where we have a topology change, its adaptation mechanisms
in order to determine the new path are not fast enough.

These facts have an impact on the throughput achieved by
each technology (Figure 4b). As we can see, OHC can adapt

faster to topology changes, due to the synchronization of the
OpenFlow entities, and achieves higher total throughput for
each technology used. The SCTP higher packet generation
delays are illustrated in the total throughput that we measure
for it. Although the total throughput is lower than TCP, we can
observe small drops when a handoff takes place. Moreover,
setting the heartbeat interval is a tradeoff between delay
and total throughput achieved; lower heartbeat intervals are
translated in lower handoff delays but consume part of the
network capacity. Regarding the MP-TCP performance, we
observe that initially, and whenever no handoff happens, it
performs similarly to TCP. However, if a handoff decision
is taken, the path determination algorithm that it is using is
adapting very slowly to topology changes. This is illustrated
by the delay for consecutive message generation which is
abnormally high, compared to the rest of the solutions.

We evaluate the protocols and frameworks for handoffs
happening every 1, 2, 5, 10 and 30 secs. As we can see
in Figure 4b, the average throughput that is accomplished
when using our scheme is reaching the total capacity of the
available UL channels of our topology. However, in the cases
when handoffs from one technology to the other happen every
1 seconds, UDP is able to perform better since it generates
new datagrams as long the new connection is established. The
congestion control algorithm of TCP does not manage to adapt
well to these rapid changes and therefore the total throughput
achieved is less compared to UDP.

TABLE II: UDP packet loss for the OHC measurements

Handoff Inter-
val

Packet Loss

1 sec 62,43%
2 secs 62,94%
5 secs 57,99 %
10 secs 62,93 %
20 secs 60,77 %
30 secs 63,27 %

However, as the handoff interval changes, we see that for
the cases of 5 seconds and more, the performance of the two
protocols converges over our framework. The average delay
for the generation of messages for the two different types
of protocols seems to converge as well in the cases where
the handoff decisions are taken with an interval of 2 or more
seconds. In the cases when handoffs happen very rapidly (per
1 sec), the average delay for packet generation in the TCP
case is higher, since our algorithm determines the new return
path for the pending ACKs.

VI. CONCLUSION

In this work, we presented our OHC scheme, which is
directly plug-able to today’s networks and can manage effi-
ciently wireless handoffs by employing OpenFlow technology
at the network edges, while the end user enjoys a completely
seamless experience. We evaluated our solution for a different
set of configurations, and compared it with other solutions for
managing mobility directly or via multi-homing functions. The
results we received are encouraging in terms of performance,
since our solution outperforms the existing solutions.

As future work we foresee the application of our scheme on
Android based smartphones for enabling fast handoffs among
the available interfaces. This operation is likely to create
performance issues, given the limited processing capabilities
of smartphone devices.

Another future extension of our work is the creation of
the local SAPs inside the controllers for the unification of
our solution with the ODTONE implementation for IEEE
802.21. Although existing works unify ODTONE with the
Linux Network Manager [7], they are able to receive messages
of an imminent handoff but not able to address the network
addressing issues that OHC solution does.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme

under grant agreement no 612050 (FLEX Project).

REFERENCES

[1] W. Song, J.M. Chung, D. Lee, Ch. Lim, S. Choi, and T. Yeoum. Im-
provements to seamless vertical handover between mobile WiMAX and
3GPP UTRAN through the evolved packet core. IEEE Communications
Magazine, 2009.

[2] K. Taniuchi, Y. Ohba, V. Fajardo, S. Das, M. Tauil, Y.-H. Cheng,
A. Dutta, D. Baker, M. Yajnik, and D. Famolari. IEEE 802.21:
Media independent handover: Features, applicability, and realization.
Communications Magazine, IEEE, 2009.

[3] G.P. Silvana and H. Schulzrinne. SIP and 802.21 for Service Mobility
and Pro-active Authentication. In Proceedings of the 6th Annual
Communication Networks and Services Research Conference, 2008.

[4] IEEE Standard for Local and Metropolitan Area Networks - Part 21:
Media Independent Handover Services, IEEE Std. 802.21, 2008.

[5] Y. Lopez and E. Robert. OpenMIH, an Open-Source Media-
Independent Handover Implementation and Its Application to Proactive
pre-Authentication. In Proceedings of the First International ICST
Conference on Mobile Networks and Management (MONAMI), 2009.

[6] Daniel Corujo, Carlos Guimaraes, Bruno Santos, and Rui L. Aguiar.
Using an open-source IEEE 802.21 implementation for network-based
localized mobility management. IEEE Communications Magazine, 2011.

[7] A. Pires, D. Corujo, and D. Gomes. EMICOM: Enhanced Media
Independent COnnection Manager. In Proceedings of sobre Redes de
Comunicaes, 2012.

[8] RFC 5944: IP Mobility Support for IPv4, Revised, 2010.
[9] RFC 3755: Mobility Support in IPv6, 2004.

[10] UMIP mobile IPv6 and NEMO basic support implementation for Linux,
available from http:/umip.org.

[11] F.Y. Leu. A novel network mobility handoff scheme using SIP and
SCTP for multimedia applications. Journal of Network and Computer
Applications, 2009.

[12] RFC 4960: Stream Control Transmission Protocol, 2007.
[13] RFC 6824: TCP Extensions for Multipath Operation with Multiple

Addresses, 2013.
[14] F. Siddiqui and S. Zeadally. SCTP multihoming support for handoffs

across heterogeneous networks. In Proceedings of the 4th annual
Communication Networks and Services Research Conference, 2006.

[15] Ch. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure.
Exploring Mobile/WiFi Handover with Multipath TCP. In Proceedings
of the 2012 ACM SIGCOMM Workshop on Cellular Networks, 2012.

[16] Hao Yu. Software-Defined Networking in Heterogeneous Radio Access
Networks. In Proceedings of 30th TERENA Networking Conference
(TNC), 2014.

[17] R. Izard, A. Hodges, J. Liu, J. Martin, K.C. Wang, and K. Xu. An
OpenFlow Testbed for the Evaluation of Vertical Handover Decision
Algorithms in Heterogeneous Wireless Networks. In Proceedings of the
9th International Conference on Testbeds and Research Infrastructures
for the Development of Networks and Communities, 2014.

[18] A. Ardiansyah, P. Paramitha, M. Salman, and D. Choi. Implementation
and Performance Analysis of Mobile Handoff Process on OpenFlow-
based Wi-Fi Network. International Journal of Technology, 2015.

[19] W.S. Kim, S.H. Chung, C.W. Ahn, and M.R. Do. Seamless Handoff
and Performance Anomaly Reduction Schemes Based on OpenFlow
Access Points. In Proceedings of the 28th International Conference
on Advanced Information Networking and Applications Workshops.

[20] Open-vSwitch, An Open virtual switch, Available from http://
openvswitch.org.

[21] NITOS: Network Implementation Testbed Laboratory using Open
Source platforms, Available from http://nitlab.inf.uth.gr/NITlab.

[22] N. Makris, Ch. Zarafetas, S. Kechagias, T. Korakis, I. Seskar, and
L. Tassiulas. Enabling open access to LTE network components; the
NITOS testbed paradigm. In Proceedings of the 1st IEEE Conference
on Network Softwarization (NetSoft), 2015.

[23] Trema: Full-Stack OpenFlow Framework in Ruby and C, Available from
http://trema.github.io/trema/.

[24] C. Paasch, S. Barre, et al., Multipath TCP in the Linux Kernel, available
from http://www.multipath-tcp.org.

[25] M. Singh, M. Ott, I. Seskar, and P. Kamat. ORBIT Measurements
framework and library (OML): motivations, implementation and fea-
tures. In Proceedings of the 1st International Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities, 2005.

