
Towards Maximizing Wireless Testbed
Utilization using Spectrum Slicing ⋆

Angelos-Christos Anadiotis1, Apostolos Apostolaras2, Dimitris Syrivelis2,
Thanasis Korakis2, Leandros Tassiulas2, Luis Rodriguez3, Ivan Seskar4, and

Maximilian Ott5

1 School of Electrical and Computer Engineering
National Technical University of Athens

Athens, Greece
2 Department of Computer and Communication Engineering

University of Thessaly
Centre for Research & Technology Hellas (CERTH)

Volos, Greece
3 Atheros Communications

4 WINLAB, Rutgers University
Technology Center of New Jersey, USA

5 National ICT Australia(NICTA)
Alexandria, NSW 1435, Australia

Abstract. As experimentation becomes one of the de-facto approaches
for benchmarking, researchers are turning to testbeds to test, review and
verify their work. As a result, several research laboratories build wireless
testbeds, in order to offer their researchers a real environment to test
their algorithms. As testbeds become more and more popular, the need
for a managerial tool that will not only provide a unified way for defining
and executing an experiment and collecting experimental results, but
that will also serve as many users as possible maximizing the utilization
of its resources, is growing. In this spirit, we propose a scheme that
exploits wireless testbeds functionality by introducing spectrum slicing
of the testbed resources. This scheme can be incorporated inside OMF,
an already existing wireless testbeds managerial framework, which is
widely used by many researchers.

1 Introduction

The theoretical analysis and the simulation of a new wireless protocol or tech-
nique can give us important information about its performance in terms of
throughput, delay, power consumption, etc. However, in order to have analyti-
cally tractable models, several simplifications of the real world have to be made.
While the simulations have the ability to incorporate more general models, we are

⋆ The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no224263



2 Angelos-Christos Anadiotis et Al.

still limited by the complexity of the simulation software and our limited knowl-
edge of the wireless environment. Some specific limitations of the simulation
approach in depicting a real wireless network include inaccurate respresentation
of the wireless medium, simplification of synchronization issues that occur in
wireless terminals and ignorance of several aspects such as the computational
overhead.

Due to the above limitations, researchers have focused in the last few years
on the studying of wireless schemes through implementing them on real plat-
forms. Most of the implementation is done on open source platforms, such as
software defined radios or open source wireless drivers. This new trend in wire-
less networks has triggered the birth and evolution of several wireless testbeds
around the globe. Researchers may reserve a testbed for a specified time and
execute their experiments there. But, how is that reservation made? Until now,
the experimenter reserved the whole testbed (or a very large part of it if we are
talking for a really big testbed such as ORBIT) even if he actually needed only a
few nodes and frequency channels. This reservation policy prohibits other users
from using the testbed at the same time, since the experiments may interfere
with each other. Moreover, most of the times the reservation is made after an
oral agreement between the potential users.

An answer to these issues would be the dynamic, on-demand partition of the
testbed to smaller parts, based on the available resources and the experimenters
demands. So, we need to build a managerial mechanism that will be able to
both handle multiple requests from the testbed users and partition the testbed
efficiently by creating virtual slices and assigning them to the respective users.
We intend to build such a mechanism using spectrum slicing techniques.

Currently, one of the most used testbeds is ORBIT [11] in WINLAB [6].
ORBIT consists of 400 nodes, available to the registered users. It has a very
well organized management system which allows users to book the testbed at
available time slots. Although ORBIT’s reservation framework is very useful
since it allows a large amount of users to remotely access the testbed, it has a
significant drawback: It does not allow for efficient use of the testbed resources.
In most of the experiments, only a small amount of nodes are being used, while
the rest are staying idle. Usually, a researcher reserves the whole testbed (400
nodes) for a couple of hours and he only uses no more than 10 nodes, leaving
the rest 390 nodes idle. With slicing, these nodes could serve the needs of other
users.

ORBIT’s example shows the need to develop a tool that will maximize the
utility of a wireless testbed. In this paper, we are proposing a scheme based on
spectrum slicing, which takes advantage of the large availability of a particu-
lar resource -that is spectrum- and, through that, increases the whole testbed’s
availability to experimenters. Of course slicing can refer to other resources too,
such as power (adjust the power that each slice will transmit to create a “safe”
area for each user), network cards (a node that has many network cards could as-
sign subgroups of them to different experimenters) and nodes (many users could
use the same node using virtualization techniques), however in this paper we



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 3

focus on spectrum slicing. This scheme is developed as a part of a more generic
managerial framework that is being designed in the concept of OneLab2 [4].
OneLab2 intends to federate heterogeneous testbeds located in different places
under a unified system. As we are illustrating in later sections, our new man-
agerial mechanism allocates a particular group of channels to a group of nodes
that is assigned to one user. In this way, we optimize the resources usage of
the testbed by allowing multiple users to operate on the testbed simultaneously,
without interfeering with each other.

The challenge in wireless testbeds slicing is the isolation of experiments, as
there are inter-dependencies among the resources. In contrast to a wired interface
where all we need to do is to manage the sharing of a specified resource on a
single node, sharing a wireless interface may also affect the sharing of interfaces
on other nodes. What correlates them are things like spectrum, location and
power which are also correlated. Power and location for instance, are two factors
that could affect each other.

The remainder of the paper is structured as follows: In Section 2 we give
related and previous work made in the domain of wireless testbeds resource al-
location. In Section 3 we give a short description of the OMF framework that
we used for developping our scheme. In Section 4 we present our spectrum slic-
ing scheme from a top-down approach. In Section 5 we present our testbed, an
example usage scenario for our scheme and statistics which give us useful feed-
back on the improvement of testbed utilization. Finally, in Section 6 we give the
conclusions that he have reached through our work in this field and in Section 7
our future plans.

2 Related Work

Several work has been made on efficient resource allocation on wireless testbeds.
However, most of this work is focused on virtualization techniques, which implies
more complex implementation and operating system dependence. Next, we are
giving two representative examples of such systems:

Emulab. Emulab is a network testbed, giving researchers a wide range of en-
vironments in which to develop, debug, and evaluate their systems. In Emulab,
there has been developed a system which virtualizes hosts, routers and net-
works, while retaining near total application transparency. This system is based
on FreeBSD Jails, which provides filesystem and network namespace isolation
and some degree of superuser privilege restriction.[13]

Mirage. Mirage is a resource allocation system, which was designed for sensor
networks testbeds and it is based on an auction scheme. The experimenters are
bidders, who argue for resources, using a virtual currency issued by the central
system. So, if a user uses the testbed in a way that matches the system’s criteria,
then he has more credits to claim resources for a next experiment.[10]



4 Angelos-Christos Anadiotis et Al.

NITLab. In NITLab [5], we have implemented a spectrum slicing scheme, which
however had some significant drawbacks and we decided to change it to this one
we are describing here. Specifically, we had focused on the new framework of
Linux wireless drivers, provided by cfg80211 [1]. This packet, which is meant
to replace Wireless Extensions [7, 15], can support Central Regulatory Domain
Agent (CRDA) [2] which controls the channels to be set on the system, based on
the regulations of each country. By making some changes on this, we managed
to succeed spectrum slicing on our testbed. However, this scheme limited us in
terms of the available drivers that could be used with it and the Linux kernel
versions that could enhance CRDA. Moreover, this scheme’s implementation was
tricky and very much system dependable. [8, 9]

Our work here is independent from the related works described above and
can be used in cooperation to them, as it schedules resource utilization from
a higher level. Furthermore, we are moving our implementation on to a more
abstract level, that is the one of the management framework, in order to set it
platform independent, since OMF is intended to cover more platforms that just
Linux. An analysis on virtualization schemes can be also found in [14], however
in this paper, we are actually implementing the spectrum slicing scheme, which
as shown in Section 5 has a very good performance on our testbed, while with
its extensions that we are planning (see Section 7), we are expecting to scale for
even more large and complex testbeds.

3 Wireless Testbed Managerial Framework

We are using cOntrol and Management Framework (OMF) [3] for managerial
framework. Currently OMF is deployed on several testbeds around the globe,
including ORBIT. Using a ruby-like experiment definition language, the exper-
imenter writes an abstract description of the experiment, stating which nodes
to use and what for, uses traffic generators, sinkers and other utilities which
are being constantly updated and integrated inside OMF. Providing full trans-
parency to users, OMF is responsible for loading their images to the testbed
nodes that they have asked for, for configuring the nodes based on the experi-
ment description and for gathering the results. Currently OMF consists of three
basic components: Gridservices, Nodehandler and Nodeagent. Next, we give a
short description of each one of them:

Gridservices. Gridservices consist of a set of web services, which are responsi-
ble for both executing system actions, such as turning a node on or off, rebooting
nodes, loading images, etc. and getting information about the testbed as they
have access to two databases: one for the testbed and its configuration and one
for the scheduler where we keep information critical for slicing. Gridservices are
residing on the testbed server.



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 5

Nodehandler. Nodehandler does the actual testbed management using Grid-
services and other operating system applications. The user interacts with the
Nodehandler to load an image to the nodes and to execute an experiment. Based
on the experiment definition, which Nodehandler is responsible to interpret, this
component is sending the respective commands to the nodes in order to configure
them and trigger the applications needed for the experiment. Like Gridservices,
Nodehandler runs on the testbed server too.

Nodeagent. Contrarily to Gridservices and Nodehandler, Nodeagent runs on
the client-side of the testbed; that is the nodes. Previously we said that Nodehan-
dler is responsible for sending commands to the nodes, based on the experiment
definition. Here comes Nodeagent, which is responsible for receiving these com-
mands them, understanding them and then trigger the respective applications.
These applications could refer to the node configuration, a traffic generator, a
traffic sink, etc.

We had to extend all the three components above to integrate spectrum
slicing support inside OMF. In the next section, we will show our basic idea
for achieving spectrum slicing, the dilemmas and the decisions we had to make
when implementing our scheme in OMF.

4 Scheduling Experiments on Wireless Testbeds

Currently OMF does not include any scheduling algorithms that would syn-
chronize the experiments execution. Its implementation does not include any
permissions checking for access to the testbed resources. However, in a public,
multiuser environment, we need a system that will be able to assign resources
only to the users that have the right to use them, while offering the experi-
menters a way to declare the resources that they need for their experiments.
In our work, resources are divided in two categories: nodes and spectrum. So,
we are providing a tool which is used by the experimenters to reserve nodes
and spectrum for some time (which should not exceed some limit). Using spec-
trum slicing, our tool makes the testbed available to users who would like to use
different resources at the same time.

4.1 Spectrum Slicing

By slicing, we mean the partitioning of the testbed based on some criteria. With
spectrum slicing, we aim to partition the testbed into smaller, virtual, testbeds
which are using different spectrum and, hence, they do not interfere with each
other. The spectrum that each virtual testbed will use could be either defined
by the experimenter at scheduling or dynamically assigned, if the experimenter
does not care about the channel that he uses (for example he could ask for any
channel of 802.11g modulation).



6 Angelos-Christos Anadiotis et Al.

Spectrum slicing can be combined with any other resource allocation scheme,
since it does not require any “negotiations” with other system resources. Fur-
thermore, spectrum is always associated with a wireless testbed experiment and,
hence, there will always be a chance to slice the testbed based on the wireless
channels each experiment needs.

(a) Testbed deployment overview. (b) Selection of particular testbed node.

Fig. 1. NITOS Scheduler Node Selection

4.2 Allocating Resources - Slices

Slices are created dynamically, upon the user reservation procedure. As we have
already mentioned, we discriminate resources in two categories: nodes and spec-
trum. Resource allocation can be made statically or dynamically. Currently, we
have developed a static scheme, but we working on extending it based on Topol-
ogy and Link Quality Assessment Protocol (TLQAP) [12]. In this scheme, the
experimenter selects the nodes and the channels he would like to use during
reservation, while at the same time, he also declares the time slots that he will
be using those resources. Next, we are illustrating the basic idea of our resource
allocation scheme, based on spectrum slicing. Finally, we are making a brief re-
port on how dynamic resource allocation would be succeeded by extending our
already existing tools.

Let us consider a testbed with OMF as its management system. As we have
already mentioned, OMF does not include a scheduler, hence we need to develop
one as a separate component of our system. In NITLab, we have developed a
scheduler, whose User Interface is available to public, through our web site. This
User Interface is responsible for guiding the user through the reservation process
and is designed in such a manner that the experimenter may have a very specific
view of the testbed topology. Providing outside and inside view of our six-floor
building, we aim to give the experimenters the best perspective of the nodes that
they are reserving for their experiments.



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 7

Now consider an experimenter who would like to use the testbed. Assuming
that he has already registered, he may log in to the scheduler’s web site and gain
access to its User Interface. From there, he first chooses the date that he would
like to run his experiments. Then, the actual scheduling process begins, with the
experimenter seeing our testbed building with an indication beside each floor on
the number of each node type that reside on that floor, as shown in Figure 1(a).

Based on these data, the user can choose a floor and guide around it from
both an outside and inside view. Having an exact view of the position of each
node, he makes his choice by selecting to reserve one, as shown in Figure 1(b).
The clock that appears on this frame can be clicked by the user on the time he
would like to check the nodes status. By clicking there, the frame is automatically
refreshed and the nodes are colored according to their status, while at the same
time, the new user loses permission to request a new reservation on that node
at that time. So, at this phase, the demand for reservation overlap prevention is
satisfied; the experimenter chooses a node available at the time he needs it and
proceeds to the next step.

At this point, the user has selected his node and he is about to reserve it for
some time. For this end, we give him two clocks, one for choosing the start time
for his experiment and one for the end time (see Figure 2(a)). Giving the user
another clock here may seem to have a security gap since the user may try (either
willingly or not) to “trick” the scheduler. However, this cannot happen. First of
all, the clock of the previous step is used for checking and not for reserving, as
such a thing would not be very practical for the user. Then we need to perform
the same check for availability of the current node here too. So, when the time
duration that the experimenter chooses at this step, includes time of another
user on this node, the scheduler does not allow him to move on to the next step
and, hence, reserve the node.

Guided by the scheduler, the experimenter has successfully chosen a node and
some time to use it. The last thing he has to do is to choose the spectrum he
would like to use; that is a group of channels that will be reserved for him during
his time (see Figure 2(b)). Again, the scheduler does not allow the experimenter
to choose a channel that is reserved by another one during that time. This is
the final step; the experimenter submits his choice and the system reserves the
node and the spectrum for him. After that, he goes to the first step, getting the
picture of the whole bulding to continue with his reservations.

The scheduler identifies the user and lets him edit or delete his reservations at
any time. It also keeps track of the last choices that he made on reservation time
and spectrum, providing them to him as default choices for the current session.
Finally, the scheduler provides the experimenter with the option to check out all
his reservations, grouped by the reservation time. So, at any time, he may login
and checkout the nodes and the channels he has reserved for some time.

4.3 Implementation

The implementation of our spectrum slicing scheme is done on two levels: (a) the
user interface which guides the user through the reservation process and does not



8 Angelos-Christos Anadiotis et Al.

(a) Time reservation of particular node. (b) Spectrum Selection.

Fig. 2. NITOS Scheduler Resource Reservation

allow him to reserve an already reserved resource and (b) the OMF components,
where we have added new and extended old ones to succeed the monitoring and
control of the slices that are created at reservation. Next, we are examining in
more depth the implementation details of each one of these two levels.

4.3.1 User Interface

The scheduler’s user interface is designed to be available through a web site,
so that any users may have access to it. Its goal is to allow the experimenters
reserve the resources they need (in terms of nodes and spectrum) in an efficient
way for the testbed usage. So, we need to reassure two things: on the first hand
an easy to use environment and, on the other hand, an application that does
not allow their choices to mess with other experimenters ones. Next, we are
giving the reservation procedure procedure giving all the details of what happens
underneath.

First the user has to log in and choose a date for his experiment. After that,
we create session for that user where we hold the details of his account. From this
point on, the scheduler knows who that user is and, based on that and the date,
it manages permissions to resources that the user might need to access on the
next steps. The main scheduling application is now deployed. This application
consists of a flash animation which uses multiple PHP scripts and XML files to
give the experimenter the information he needs, as we explain next.

The scheduler gives the user a perspective of the testbed topology. On our
testbed, NITOS, which is located on a six floor building, the scheduler shows the
number of each node type, residing on each floor. The topology view is loaded
dynamically by using XML files. The scheduler application reads the respective
configuration file and loads the topology that the experimenter will be able to use
during his session. We have reached the choice of XML files because we are aiming
to develop a tool that would easily support any other similar wireless testbed,
without having to do any major changes on the code. Moreover, the testbeds



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 9

themselves are not static and it would not be convenient for the administrators
to change the code each time a node falls down, or a new one is added to the
testbed.

The user clicks on a floor and gets its perspective. Our user interface provides
full inside and outside view of the floor. Along with this view, scheduler provides
the user a clock where he clicks on the time he would like to check for reservations.
Each click triggers a PHP script, which checks a database that resides on the
testbed web server (for greater speed) and colors the nodes respectively. So, if
the node is free at that time, it is colored with its native color and the user can
make a new reservation. If the node is reserved by another user, it is colored red
and the current user cannot do anything on it. Finally, if the node is reserved
by this user, it is colored purple and the user can edit his reservation. What we
actually do here is to grant permissions on each node (resource) based on the
user that claims it.

The next step, is using similar tools with the experimenter clicking on start
and end time for his experiment and the scheduler checking if those are available.
At each step, the scheduler does not allow the user to move on without making
a right choice. When this step has finished, the experimenter has selected a node
and a time duration for his experiment.

Moving on to the final step, the experimenter has to declare the set of chan-
nels that he needs to perform his experiments. Again, using an XML file, sched-
uler loads all channels available, based on the laws of each country. After that,
it checks the database to see which of these channels are reserved by other users
and which ones are reserved by this user at a previous step. Keeping the same
template as before, we mark with red the frequencies that cannot be chosen, with
purple the user’s previous choices on this node (in case the user had selected to
edit his reservation) and with blue the previous user’s choices on this session, so
that he does not have to select the same channels again and again for each node
he reserves.

After that step, the user’s choices are committed to the scheduler’s database.
This database contains information about the testbed topology, the available
spectrum and, of course, all users reservations. Using PHP scripts and XML
configuration files, this database can be automatically updated through the web
site by the scheduler’s administrators. Furthermore, the scheduler’s web site can
provide information to each user of the reservations he has made until now, so
that he may see older preferences which fitted, check the exact reservation details
when the time has come to execute the experiment, or anything else.

Finally, since the scheduler’s user interface resides on the web server, while
the testbed has another server, we have setup a secure communication channel,
which is used by the scheduler to inform the testbed server’s cron daemon to
schedule necessary tasks for each experiment. Such tasks are unlocking the users
accounts when the reservation starts and locking them when it ends and setting
up firewall rules that prevent the users from trying to access nodes that are not
assigned to them, by using applications others than OMF (for example secure
shell).



10 Angelos-Christos Anadiotis et Al.

4.3.2 OMF Components

Until now we have described the part of the scheduler which is focused to the
experimenter and his choices at reservation. This, however, is not always enough.
Mistakes can be made some times willingly, some times not; in any case, we need
to ensure that the experimenters will stick on their choices and, even if they try,
the system will not allow them to use any resources that they have not reserved.

In order to do that, we have chosen to extend OMF, which is a very popular
managerial framework for wireless tesbeds. In Section 3, we gave a short descrip-
tion on OMF, how it is structured and the role of its components. Here, we give
a detailed description of the additions and the extensions we had to make inside
this framework to integrate spectrum slicing support in it.

Before anything else, we need a way for OMF and the scheduler’s database to
communicate. For this purpose, we have added one more service group to Grid-
services named scheduler and we have added one more service to the inventory
service group. Next, we are showing what these services are responsible for. First
of all, the inventory service group is developed inside OMF and provides a set
of webservices that provide general information about the testbed (such as node
names, IP addresses, etc). This information is stored in a database residing on
the testbed server and the inventory service group reads this database to return
the proper response. Our addition here is a service which gets a node location
(that is its coordinates) based on its IP address. Note here that the node loca-
tion is a piece of information that is the same on both the scheduler’s and the
testbed’s database and, thus, we can use it to do the matching. We have added
this service, because when an experiment is executed, OMF does not know a
node’s location; only its IP address.

Now that scheduler knows the exact location of the node, it can use the sched-
uler service group to get any information needed from the scheduler’s database.
Namely, the services provided by this group provide functionality to get a node
reservations based on its coordinates, the spectrum that this reservation con-
tains and the user that owns it. Furthermore, it provides services that can do
the matching between a channel or a frequency number and the respective spec-
trum identification number as it is stored in the database. All this information
will be used by Nodeagent, which decides whether to allow the user use the
channel or not.

So, Nodeagent is responsible for deciding whether the resources declared in
the experiment should be allocated to the experimenter. In order to decide, the
Nodeagent has to ask the scheduler’s database if the specified resources have
been reserved by the experimenter. So, when the experiment sets the wireless
card channel, this information is passed to the Nodeagent, which now knows the
channel along with its own IP address. All he needs is the user identification to
check with the scheduler’s database if this channel (and, of course, node) should
be allocated to that user.

However, this is not straightforward, since the user usually logs into the node
as root (keep in mind that the experiment loads his own image to the nodes,
so he has full privileges on them). So, we need to track where did he use the



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 11

username that he also used for registering. The scheduler is designed in such a
manner that, when a user registers to the system, then an account with the same
username and password is automatically created to the testbed’s server. The user
uses this account to both access the user interface and the testbed server (using
secure shell connection). This can solve our problem, since we can say for sure
that the user that is running the experiment is logged into the console with the
same username that he has made his reservation.

This information, though, relies on the testbed server, while the Nodeagent
runs on the client side; that is the nodes. We need to pass that information from
the server to the clients. This is done by the Nodehandler, the OMF service that
is running on the server side and is responsible for controlling the experiment
execution. Using its built-in message passing mechanism, Nodehandler tells the
Nodeagent the username of the experimenter and now the last one has almost
everything he needs to do the matching, except the date. The system should not
rely on the experimenter to keep the clock of his clients coordinated with the
testbed. This is why, Nodehandler sends, along with the username, the date at
that time and the Nodeagent adjusts its clock to match the server’s.

At this point, Nodeagent has all the information needed to check with the
scheduler if the requested resources should be allocated to the experimenter.
Using the web services we described above, the Nodeagent checks if there is
a reservation at that time for that user and if the spectrum reserved at this
reservation matches the channel that the experimenter has requested to assign
to the network card through his experiment.

If all data match, then the Nodeagent lets the experiment execution move on.
Otherwise, it notifies the Nodehandler that a resource violation has taken place
and stops its execution (without assigning the channel to the node’s network
card). When the Nodehandler receives that message, the execution is termi-
nated immediately and an ERROR message is thrown back to the experimenter
describing the resource violation.

5 Slicing in Action - Usage Statistics

5.1 Testbed Description

The testbed that we used for design and deployment of our scheme is consisted of
10 ORBIT-like nodes, as depicted in Figure 3(a) and 5 Diskless nodes, as shown
in Figure 3(b). An ORBIT-line node consists of a 1GHz VIA C3 processor,
512MB of RAM, 40GB of hard disk, two ethernet ports and two miniPCI slots
which are used to host two Atheros WiFi cards. Our diskless nodes consist of
a 500 MHz AMD Geode LX800 CPU, 256MB of RAM, a 1GB Flash Memory
Card, two ethernet LAN ports and two Atheros wireless cards.

All the nodes are connected through wired Ethernet with the testbed’s server
- console. In console we have all the required testbed services running. These
services are both network services, such as Dynamic Host Configuration Protocol
(DHCP) server which gives IP address to the nodes, Domain Name System



12 Angelos-Christos Anadiotis et Al.

(a) ORBIT Node (b) Diskless Node

Fig. 3. NITOS Nodes

(DNS) server which gives names to the nodes, Network File System (NFS) server
for experiment results and slicing support as we are going to see next, and testbed
services which are combined to the functionality of OMF.

We also maintain a web server where we keep the web interface of our system’s
scheduler. On this server, we also keep some scripts mandatory for remotely
booking the nodes and a MySQL server for keeping records of the testbed status
at each slot. Finally, we have set up a secure communication line, using Secure
Shell (SSH) and a RSA key between the web server and console so that the
scripts on the web server trigger the respective scripts on console.

After the user books some nodes at a specific time on the testbed, he logs
into console at that time and from there, he can start using the testbed. The
image is loaded on each node from console through the wired Ethernet interface.
More information about our testbed’s architecture can be found at our web site.

Although we have built this scheme on our testbed, it could also be applied
to any wireless testbed which is using OMF as its management framework.

5.2 Experiment Execution Scenario

Here, we give an experiment execution scenario on our testbed, in order to
illustrate the scheduler’s usage and importance. In this scenario, we have Bob
and Alice to be our experimenters, who have made their reservations and want
to use our testbed, NITOS.

In Figure 4 we are showing a snapshot of NITOS execution on October 10,
2010 at 11:05 AM. At that time, there are two users whose experiments are
about to be loaded: Bob and Alice. As we can see, both our users have reserved
resources through NITOS Web Server and these reservations are kept into the
Scheduler DB. Bob’s reservation begins at 10:00:00 AM, ends at 12:00:00 AM
and includes channels 7 and 8. Similarly, Alice’s reservation begins at 10:30:00
AM, ends at 11:30:00 AM and includes channels 2 and 3.

Now, based on these reservations, Bob and Alice are trying to execute an
experiment, so they log into NITOS server. At this point, we should mention,
that since we allow experimenters to log into our testbed server, we need to be



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 13

very careful with security. This is why, we alter our firewall rules, which are tailor
made on each user, so that he would not be able to access any of the testbed
resources he has not already reserved (e.g. in our case, Bob cannot use a node
that belongs to Alice or to neither of two).

After they have logged into the server, Bob and Alice ask OMF to execute
their experiments. In his experiment description, Bob is setting the channel
of his nodes to 7 and Alice to 8. Based on each experiment, the Nodehandler
notifies accordingly the Nodeagent that is running on the nodes, which rely on
a University building. When the Nodeagent is asked to set the channel of Bob’s
nodes, it checks Bob’s reservation on Scheduler DB to see if channel 7 is included.
Indeed, channel 7 is included in his reservation and the experiment execution
continues normally. Now, when the Nodeagent is asked to set the channel of
Alice’s nodes, it checks Alice’s reservation on Scheduler DB and sees that Alice
has reserved channels 2 and 3 and not channel 8. In this case, the Nodeagent
does not set the channel, terminates this session and sends an ERROR code back
to the Nodehandler which indicates that there has been a channel allocation
problem with Alice’s experiment. The Nodehandler terminates the experiment
execution and notifies Alice of the problem.

Fig. 4. Bob and Alice Experiments Execution



14 Angelos-Christos Anadiotis et Al.

5.3 Usage Statistics

To outline slicing benefits, we have monitored testbed usage for a period of 5
months. We have added logging support to our scheduler as follows: The user
is firstly prompted to enter the number of nodes that are needed by his/her
experiment without being able to see which testbed nodes are occupied. If the
system has enough resources to satisfy the request, the user may continue with
the standard allocation procedure. Otherwise, the scheduler informs the user
that the required amount of nodes cannot be allocated. With this approach
we were able to log the allocation requests which were denied. Note that in the
standard scheduler interface, the user is provided with enough visual information
to determine whether the required number of nodes is available or not and avoids
issuing requests which would be denied.

During these 5 months, the testbed use was approximately 500 hours. During
these hours a total of 1008 requests were issued. To determine overall testbed
utilization, we logged for each hour during which the testbed was in use and
allocation requests were denied, the number of nodes that were not occupied.
More specifically, we regard as the testbed idle time unit the idle hour of a
single node. If for example 5 nodes are idle during a testbed usage hour this
amounts to 5 idle hours. Since we have 15 nodes, the available usage time units
of the logging period were 7500 (TestbedUsageHours ∗NumberOfNodes). To
compare slicing with the simple allocation scheme that cannot allocate wireless
frequencies, we developed a simulator. We should note here, that our testbed
topology, in terms of physical wireless range, forms 2 independent neighborhoods.
The first neighborhood has 7 nodes and the second 8. Therefore,the simple node
allocation scheme can assign each node neighborhood independently and host
up to two testbed users concurrently. Our simulator implements this policy,
replays the allocation requests that have been logged for the 5-month period,
determines the number of denied requests and testbed utilization time of the
simple allocation scheme. In Figure 5 we depict the number of denied requests
along with the testbed total idle time that we logged for slicing and simulated
for simple allocation scheme.

6 Conclusions

As wireless networking research emerges, the respective testbed infrastructures
and management systems should employ more sophisticated approaches to dis-
tribute available resources. While many of the management concepts that have
been introduced for wired testbeds, have been extended and reused by wireless
testbed management frameworks, the latter face an additional important chal-
lenge: the distribution and management of the wireless bandwidth in terms of
frequency channels, which along with the node topology and connectivity range
can become a very complicated task. In this work we attempted to address this
issues.



Towards Maximizing Wireless Testbed Utilization using Spectrum Slicing 15

1 2

 
TotalRequests
SlicingRequestsDenied
SimpleRequestsDenied

1 2

 
TotalHours
SlicingIdleHours
SimpleIdleHours

Fig. 5. Slicing performance for a 5-month period, compared to the simple allocation
policy simulator results for exactly the same workload.

7 Future Work

In the domain of scheduling experiments on wireless testbeds, there still is much
work that has to be done. Since we are expecting a growth to the testbeds usage
by the researchers in the near future, we should put our efforts in developing
a scheduling scheme, which will be able to allocate resources to experimenters
efficiently, while, in the same time, it will be providing a transparent mechanism
for executing the experiments.

First of all, we are working on integrating TLQAP in our scheduler. The
scheduler can use TLQAP to extract information about the status of the testbed
resources at any time needed. With this information, it is in place to match the
experimenters demands on power, spectrum, location, etc. with the resources
and schedule the experiment whenever they are available, without having the
experimenter himself to check for their availability at each slot.

Furthermore, we are working on implementing other slicing schemes, which
will depend on the transmission power control, the sharing of wireless network
cards and the sharing of nodes themselves. For instance, we may adjust the
power that a node will transmit based on the experiment characteristics and,
thus, create a smaller neighborhood where the experiment will take place, while
the rest of the testbed will stay available to other users. With network cards
sharing, we plan to let two users make use of a node which has two wireless
cards on, by assigning one card to each user. Finally, nodes sharing will give
us the power to run multiple experiments on different images on the same for
multiple users. We are expecting that this last scheme, in combination with
spectrum and power slicing and wireless cards sharing, will give us a large scale
improvement to the testbed utilization.



16 Angelos-Christos Anadiotis et Al.

Wireless testbeds federation is another step that we are planning to take. The
additions made for spectrum slicing in OMF services, provide us a very good
tool for this end. We are thinking federation in two aspects: that of experiment
execution and of experiment scheduling. Our work focuses on satisfying both
these aspects using web services, which can be used as the tool to remotely
invoke resource, get information, etc. However, with federation, we have other
issues arising too, such as security, since we are dealing with resource allocation
through a public network (Internet).

References

1. cfg80211 - Linux Wireless. http://wireless.kernel.org/en/developers/

Documentation/cfg80211.
2. CRDA - Linux Wireless. http://wireless.kernel.org/en/developers/

Regulatory/CRDA.
3. OMF Developer Portal. http://omf.mytestbed.net.
4. OneLab2. http://www.onelab.eu/.
5. UTH NITLab. http://nitlab.inf.uth.gr.
6. WINLAB - Rutgers University. http://winlab.rutgers.edu.
7. Wireless-Extensions - Linux Wireless. http://wireless.kernel.org/en/

developers/Documentation/Wireless-Extensions.
8. Angelos-Christos Anadiotis, Apostolos Apostolaras, Dimitris Syrivelis, Thanasis

Korakis, Leandros Tassiulas, Luis R. Rodriguez, Ivan Seskar, Maximilian Ott. A
Demonstration of a Slicing Scheme for Efficient Use of Testbed’s Resources. Demo
- Mobicom 2009, September 2009.

9. Angelos-Christos Anadiotis, Apostolos Apostolaras, Dimitris Syrivelis, Thanasis
Korakis, Leandros Tassiulas, Luis R. Rodriguez, Maximilian Ott. A New Slicing
Scheme for Efficient Use of Wireless Testbeds. In Proceedings of the 4th ACM
international workshop on Experimental evaluation and characterization, 2009.

10. Brent N. Chun, Philip Buonadona, Alvin AuYoung, Chaki Ng, David C. Parkes,
Jeffrey Schneidman, Alex C. Snoeren, Amin Vehdat. Mirage: A Microeconomic
Resource Allocation System for Sensornet Testbeds. In Proceedings of the 2nd
IEEE workshop on Embedded Networked Sensors, 2005.

11. D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R.
Siracusa, H. Liu, M. Singh. “Overview of the ORBIT Radio Grid Testbed for
Evaluation of Next-Generation Wireless Network Protocols”.

12. Dimitris Syrivelis, Angelos-Christos Anadiotis, Apostolos Apostolaras, Thanasis
Korakis, Leandros Tassiulas. Tlqap: A topology and link quality assessment proto-
col for efficient node allocation on wireless testbeds. In Proceedings of the 4th ACM
international workshop on Experimental evaluation and characterization, 2009.

13. Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad,
Tim Stack, Kirk Webb, Jay Lepreau. Large-scale Virtualization in the Emulab
Network Testbed. In USENIX 2008 Annual Technical Conference on Annual Tech-
nical Conference, 2008.

14. R. Mahindra, G. D. Bhanage, G. Hadjichristofi, I. Seskar, D. Raychaudhuri, Y.Y.
Zhang. Space Versus Time Separation For Wireless Virtualization On An Indoor
Grid. In Next Generation Internet Networks, 2008.

15. J. Tourrilhes. Wireless Extensions for Linux. http://www.hpl.hp.com/personal/
Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html.


