
TLQAP : A Topology and Link Quality Assessment
Protocol For Efficient Node Allocation on Wireless

Testbeds ∗

Dimitris Syrivelis
Dept of Computer and

Communications Engineering
University of Thessaly

jsyr@inf.uth.gr

Angelos-Christos
Anadiotis

Dept of Computer and
Communications Engineering

University of Thessaly
aganadio@inf.uth.gr

Apostolos Apostolaras
Dept of Computer and

Communications Engineering
University of Thessaly

apaposto@inf.uth.gr

Thanasis Korakis
Dept of Computer and

Communications Engineering
University of Thessaly
korakis@poly.edu

Leandros Tassiulas
Dept of Computer and

Communications Engineering
University of Thessaly

leandros@inf.uth.gr

ABSTRACT
In this paper we present Topology and Link Quality Assess-
ment Protocol (TLQAP), which we have implemented as a
wireless testbed management framework component, that is
used to inspect link quality between wireless testbed nodes
and appropriately map them to user experiment require-
ments. TLQAP is mainly an OSI layer 2 design for fixed lo-
cation, non RF-isolated wireless testbed deployments, which
assesses interconnection topology and link quality by esti-
mating packet delivery ratio (PDR) and transmission delay
at each node for all requested channel, rate and transmission
power combinations. Moreover, TLQAP builds a measure-
ment history log and creates a channel utilization profile, in
the context of each testbed node, for all the nearby testbed-
external devices that operate independently in the region
and are not under the management framework control. The
analysis of this information enables TLQAP to choose the
channels that have the highest probability of being free dur-
ing an experiment. TLQAP OSI layer 2 component has
been implemented in the click modular router framework
and the controller component has been integrated with OMF
management framework for wireless testbeds. To outline
TLQAP benefits, we have performed experiments on our
ORBIT node testbed and we compare it to an existing ap-
plication level measuring tool.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement nř224263

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’09, September 21, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-740-0/09/09 ...$10.00.

Keywords
link quality measurements, wireless testbed framework

1. INTRODUCTION
As wireless computer networking is becoming mainstream

for almost any type of network deployments, research at all
design levels of wireless systems is very active. While for
wired network solutions most researchers developed proto-
types on simulation environments, the unpredictable factors
that can affect the quality of wireless connectivity, espe-
cially in large-scale experiments, made respective wireless
systems simulations almost impossible. To that end, there
is a great need to deploy and manage wireless testbeds that
can be used for the development and evaluation of wireless
networking systems.

Managing and distributing a collection of wire intercon-
nected computers to multiple users with guaranteed resource
availability, like the number of dedicated processors, mem-
ory and network bandwidth, has a number of challenges
which have already been addressed by managing frameworks
for High Performance Computing (HPC) clusters. In the
same spirit, wireless testbed deployments also feature a wired
ethernet backbone that is used by the respective resource
management frameworks [14]. Therefore, many of the man-
agement concepts that have been introduced for wired test-
beds [3] [4], have been extended and reused by wireless
testbed management frameworks. On the other hand, the
latter face an additional important challenge: the distribu-
tion and management of the wireless bandwidth in terms of
frequency channels, which along with the node topology and
connectivity range can become a very complicated task.

To deploy an experiment, the wireless testbed user will
need to allocate nodes that satisfy certain topology and link
quality requirements. Moreover, the knowledge of the maxi-
mum possible throughput that each connection can achieve,
allows the user to properly evaluate the observed experiment
performance. In some wireless testbed deployments [5] were
all the nodes are in an RF isolated room and are tightly
located to avoid connectivity range problems, the allocation
of frequency channel, also known as slicing [6], can be per-
formed in a static manner. In these setups, wireless channels

and bandwidth can be distributed as any other resource,
like processors or memory and the user must not be able to
change them.

While the described wireless testbed deployments are ap-
propriate for a wide range of networking system experi-
ments, there is also a need for testbed deployments that are
closer to an end user setup. In such deployments there might
be indoor and outdoor nodes with wireless links of varying
quality, where some of them might not be able to directly
communicate. Moreover, the testbed might not be RF iso-
lated, e.g deployed on a campus site [8] [7], where several
other wireless terminals, out of the testbed context, com-
pete for channel use. Nevertheless, for a certain range of ex-
periments, that usually belong in wireless mesh network re-
search, the user can take advantage of the described testbed
setups to evaluate networking systems (e.g. adhoc routing
protocols, hidden terminal solutions). In these testbed cases,
the user will need to know the actual link quality of all the
wireless links, as well as the possible topologies that can
be formed by the allocated nodes, in order to evaluate the
experimental results. For example let’s assume that a user
needs to test a network coding design approach.

In network coding, each node that acts as a gateway be-
tween other nodes that cannot communicate directly, may
produce a linear combination (mix) of two or more pack-
ets that belong to different flows and avoid this way ex-
plicit transmissions by performing a single transmission of
the mixed packet (which must be appropriately decoded at
each destination). Obviously, the biggest challenge of net-
work coding schemes is to properly identify coding oppor-
tunities which directly depend on the network topology and
link quality. In this case the user needs to allocate nodes that
satisfy certain topology requirements and needs to know ex-
plicitly the location of each node on the connectivity graph.
In such cases the testbed management framework needs a
system like TLQAP to satisfy the node allocation require-
ment.

Of course, since the testbed deployment is not RF isolated
and the environment is volatile, the link quality between
any pair of nodes may unexpectedly vary at any point in
time due to external interference. For this reason the static
distribution approach, that is used in RF isolated wireless
testbeds, is not efficient for these deployments.

The wireless management framework of non RF isolated
testbeds should feature support that can quickly and ac-
curately inspect the current link qualities between all the
available testbed nodes and at all available channels. This
should be the first step of the management framework re-
sponse to a node allocation demand. Frequent inspection
of the link quality will enable the framework to allocate the
nodes that at least have the highest probability to satisfy
the experiment requirements. Of course, during the actual
experiment deployment, intrusive external interference may
appear but this will happen with reduced probability com-
pared to a static channel allocation method. Moreover, the
management framework may perform inspections whenever
the testbed is not in use and identify, independently for each
link, time periods where external interference will be with
high probability minimal. The main characteristics of an
inspection subsystem that frequently determines the quality
of wireless links between testbed nodes should be accuracy,
speed and scalability.

In this work we propose the Topology and Link Quality

Figure 1: TLQAP header.

Assessment Protocol (TLQAP) which has been designed to
satisfy efficiently the aforementioned need for node alloca-
tion on non RF isolated wireless testbeds. TLQAP is an
OSI Layer 2 protocol, tightly integrated with the under-
lying MAC layer that exports a control and configuration
interface which can be used appropriately by a management
framework. The latter may use TLQAP support to quickly
and accurately determine the current quality of the wireless
links between testbed nodes, on all available channels and
rates. We have implemented TLQAP in the click modular
router [12] taking advantage of the available click extensions
for the madwifi driver [1]. On the control side we have im-
plemented an OMF based controller plugin, that interacts
with TLQAP, observes link qualities and allocates the ap-
propriate nodes based on the user experiment demands. In
the sections that follow we describe the TLQAP protocol, all
system components and their organization and we compare
the accuracy, the speed and the scalability of our approach
with an approach that is based on existing tools.

2. TLQAP PROTOCOL
The TLQAP approach is based on actual throughput mea-

surements of a fixed number of consecutive packet trans-
missions that are initiated at each testbed node. A typical
TLQAP session is as follows. The management framework
interacts with the user and creates an xml file (presented in
the implementation section) that describes the required link
quality between the nodes that form the network topology.
Then the framework generates a list of the available nodes
and channels, that are not currently assigned to other ex-
periments, and deploys the TLQAP system. After all the
nodes are ready, the management framework sequentially
starts for each node, channel rate and transmission power,
the TLQAP transmission sessions.

Each TLQAP session is comprised of a user defined num-
ber of fixed size packets which are transmitted in one burst
at a specific channel, rate and power combination. These
packets are addressed to an arbitrary neighbor node of the
current transmitter and must be transmitted without the
802.11 support for low level acknowledgements and retrans-
missions. Otherwise, the packet loss ratio as captured by
TLQAP will be far lower than the underlying, actual loss
ratio. Only one TLQAP session is testbed wide allowed
at a time, so the next TLQAP session on any node may
begin after the previous one is completely finished and all
the scheduled packets have been transmitted. Each node
initiates TLQAP transmission sessions for all the required
channel, rate and power combinations.

On the other hand, each node sniffs (media is in mon-
itor mode) and logs all the TLQAP packets that it can
hear. TLQAP features a network packet header that is

placed immediately after the ethernet header as depicted
in figure 1. The header fields are the sender IP address
along with globally agreed identification numbers for the
channel, rate and transmission power that have been used
for current packet transmission. The TLQAP log is based
on a counter map that holds an independent counter for
each sender IP, channel, rate and power combination. Each
counter is incremented when a packet with the appropri-
ate combination arrives. After all TLQAP sessions have
completed, the management framework collects the counter
maps from all the nodes and processes them to calculate, for
each node, the packet delivery ratio (PDR) for each chan-
nel, rate and power. The PDR from node X to each node
Y is calculated by dividing the number of packets received
by Y by the number sent by X. As we have mentioned,
during each transmission session a fixed number of packets
is transmitted. The respective session transmission delay is
recorded and it is immediately retrieved by the management
framework which, along with the counter maps, has all the
information that are needed to: i)calculate PDR for each
available link direction and ii)inspect channel traffic. In the
next section we give more details on how we perform all the
measurements.

3. SYSTEM IMPLEMENTATION
The TLQAP implementation features two main compo-

nents: An OSI layer 2 component that has been integrated
with the linux network stack and a controller component
that has been implemented as an OMF [14] wireless man-
agement framework extension.

3.1 Network Stack Support
We have implemented the TLQAP protocol in the click

modular router framework [12]. Click is a linux packet pro-
cessor engine that has been integrated in the linux network
stack and is suitable for the development of real world, pro-
duction quality, networking systems that are primarily tar-
getted at OSI layer 2 and 3. In the TLQAP implementation
we have used the click extensions for the madwifi driver that
controls the Atheros 5212 chipset. With these extensions,
TLQAP can configure the underlying driver parameters like
transmission rate and power independently for each packet.

The click TLQAP implementation is comprised of two so
called click elements: The TLQAP receiver and the TLQAP
transmitter. The network stack incoming and outgoing pro-
cessing paths are depicted in figure 2 a) and figure 2 b)
respectively.

Empty packets of a fixed size are generated by the click
RatedSource element that along with a Burster element form
the packet generator engine. This produces a fixed number
of packets for each transmission session and pushes them all
at once to the next element which is the TLQAPtransmit-
ter. This element, based on its current configuration (rate,
channel, power), encapsulates the packets that arrive from
the generator with a properly informed TLQAP header (fig-
ure 1) and enqueues them to its transmission queue.

The underlying madwifi driver is instructed to transmit
addressed packets without 802.11x level acknowledgements
and retransmissions but it does use the transmission slot
backoff policy. This way the transmission delay of a ses-
sion packet set depends entirely on the rate and the channel
traffic. Transmission delay for a broadcast session is accu-
rately recorded by the TLQAPtransmitter and the value is

Figure 2: TLQAP in the Network Stack: a) incom-
ing path, b) outgoing path

immediately retrieved by the OMF management framework,
which has to wait for the transmission session to finish. The
recorded delay is used to determine possible channel traf-
fic that originates from a testbed external source. This is
a straight forward estimation because at a specific rate Y
bytes/sec, a fixed number X of fixed sized packets of byte
size Z, needs W ∗

X Z

Y
seconds to get transmitted over a

free channel. The factor W is used because the wifi header
bytes are stripped before delivery to TLQAPreceiver with-
out being counted, while other low level 802.11 details may
introduce additional byte transfer delay. After performing
numerous experiments on free channels and different rates
we have seen that for 1400 byte ethernet frames W is equal to
0.7. If the channel is not free, the low level 802.11 transmis-
sion backoff delays will increase the overall packet transmis-
sion delay. The fraction of the recorded TLQAPtransmit-
ter delay by the theoretical transmission delay of a session
packet set gives the respective free channel ratio. Obviously
the larger the packet set, the more accurate the free channel
ratio estimation because a larger time slot is inspected.

Notably, since TLQAP sessions are transmitted in a sin-
gle burst and immediately saturate the MAC layer at all
available transmission rates, the channel utilization can be
again estimated during each transmission session and an av-
erage can be returned by TLQAP system for each channel.
This approach is employed to inspect channel utilization for
a larger time slot which improves the traffic observation.
For this reason, TLQAP sessions, which are started from
the highest provided rate, do not stop when PDR is found
equal to one at all recipient nodes. Note that, in this case,
PDR for lower rates will be definitely equal to 1 for all nodes
and the broadcasts from that point onwards are performed
only to inspect channel utilization. Of course, the fact that
a channel is found free during the TLQAP measurements
does not provide any form of guarantee that it will continue
to be available during the actual deployment of the user
experiment. In the next subsection we describe framework
support that increases the probability that a channel will
continue to be free during the actual testbed use.

In the incoming path (figure 2 a), the madwifi driver is
configured to operate in monitor mode and delivers for pro-
cessing all the frames it receives. After the wifi header de-

capsulation the packet is delivered to the TLQAPreceiver
element, which checks if it contains a TLQAP header. If
it does, the element reads all the TLQAP field values and
forms a hash identifier that is used to retrieve and increment
the appropriate counter from a hash table (counter map).
The received packet is then discarded. The counter map
contents can be retrieved at any time from the management
framework.

Both TLQAPtransmitter and TLQAPreceiver elements
can be configured via the click communication interface.
The latter can be accessed on each node via telnet (over
the wired ethernet) or locally via loopback interface. This
communication channel is also used for data retrievals. The
described support allows easy integration of TLQAP with
any type of management framework.

3.2 Management Framework Support
We have integrated TLQAP with the OMF framework

for wireless testbeds. OMF is a Control, Management and
Measurement Framework that provides the users with a set
of tools to describe, execute and collect the results of an
experiment in a straight forward manner. There are three
main components that comprise OMF: i) the gridservices,
ii) the nodehandler and iii) the nodeagent. Below, we give
a short description for each one of these components.

Gridservices is a set of web services that are used by OMF
to fetch information and perform actions remotely on the
nodes. These services can be used for the node system image
loading, the experiment execution and the results collection.

Nodehandler resides on the central server that interacts
with the user for the experiment submission. Moreover, it
provides the necessary applications for node system image
loading, experiment execution, image saving and node sta-
tus check. Nodehandler communicates with both the grid-
services and the nodeagent to get the required information
and perform actions. Regarding the experiment deployment,
nodehandler contains a set of prototypes that can be used for
experiment definition. Based on a message passing system,
the nodehandler uses either multicast or unicast communica-
tion to contact nodeagent(s) in order to initiate and control
experiment deployment. Finally, nodehandler watches the
experiment execution and notifies the user for any problems
that may arise.

A nodeagent instance is deployed on each testbed node.
Contrary to the nodehandler which is triggered upon load,
execution, save or status call, the nodeagent is constantly
active. It is waiting for information to arrive from the node-
handler, which contain instructions for the experiment de-
ployment. Since nodeagent runs as a background process, it
reports its state to the nodehandler, which in turn notifies
the user.

Apart from these existing components, OMF is being cur-
rently extended with a new component that performs schedul-
ing. In this first scheduler version, the user may request the
topology and the resources needed for his experiments. Ob-
viously, the scheduler needs to determine the current testbed
topology, link quality and channel utilization to properly de-
cide which node set matches the experiment requirements.

More specifically, we developed an OMF based TLQAP
controller component to accomplish the following tasks: i)
interact with our scheduler and get a list with nodes and
spectrum availability as well as topology and link quality re-
quirements, ii) configure TLQAPtransmitter and start trans-

mission sessions sequentially on each node, iii) collect the
transmission delay for each broadcast session after it is com-
pleted, iv) collect the counter maps from all nodes, v) pro-
cess results, allocate the nodes and reply to the scheduler.

Initially the user should provide the framework with an
abstract description of the nodes and the link characteris-
tics that are needed between them. Based on those data,
the scheduler creates an XML description of the users’ re-
quest. Before starting the XML dialog, the scheduler also
collects information about the available nodes and the spec-
trum. Then it initiates communication with the TLQAP
controller, that runs on the OMF server and provides the
available nodes using the following XML syntax that is il-
lustrated via an example:

<TestbedAvailability>

<Domain name=”n i t o s”>
<AvailableSpectrum>

<Channel>1</Channel>

<Channel>2</Channel>

</AvailableSpectrum>

<AvailableNodes>

<Node>node001</Node>

<Node>node003</Node>

</AvailableNodes>

</Domain>

<Domain name=”sb2”>
<AvailableSpectrum>

<Channel>3</Channel>

<Channel>4</Channel>

</AvailableSpectrum>

<AvailableNodes>

<Node>node001</Node>

<Node>node002</Node>

</AvailableNodes>

</Domain>

</TestbedAvailability>

The TLQAP controller now knows which nodes and chan-
nels are available, but it also needs to know which are the
experiment link requirements. For this reason the sched-
uler, which has already interacted with the user, issues the
following link quality request:

<NetTopoGraphReq>

<l ink id=”1” type=”b i d i r e c t i o n a l ”>
<MaxChannelUtil>30</MaxChannelUtil>
<direction>

<MinRate>10</MinRate>

<MinPDR>60</MinPDR>

<TransPower>60</TransPower>

</direction>

<direction>

<MinRate>10</MinRate>

<MinPDR>60</MinPDR>

<TransPower>60</TransPower>

</direction>

</link>

.
</NetTopoGraphReq>

This request describes independently for each link and di-
rection the minimum requirements. Note that the maximum
channel utilization refers to the maximum allowed percent-
age of channel that may occupied by testbed external de-
vices. The TLQAP system should determine and reply with
all the links that meet these requirements. The reply XML
syntax is as follows:

<NetTopoGraphRes>

<l ink id=”1”>
<node src=”Node001”>

<connection dest=”Node005”>
<Channel>48</Channel>

<Rate>10</Rate>

<PDR>60</PDR>

</connection>

<connection dest=”Node007”>
<Channel>4</Channel>

<Rate>12</Rate>

<PDR>70</PDR>

</connection>

.
</node>

<node src=”Node005”>
<connection dest=”Node001”>

<Channel>48</Channel>

<Rate>10</Rate>

<PDR>60</PDR>

</connection>

<connection dest=”Node007”>
<Channel>8</Channel>

<Rate>15</Rate>

<PDR>60</PDR>

</connection>

. .
</node>

. .
</link>

</NetTopoGraphRes>

TLQAP controller is now ready to perform the TLQAP
based measurements. Firstly, it inquiries the testbed sched-
uler to get the list of available nodes and channels on which
TLQAP measurements may be performed. Then the system
uses OMF support to load TLQAP images to the nodes and
start TLQAP click instances. The transmission sessions are
sequentially started on each node for all available channels,
rate and power combinations. The controller stores the re-
ported transmission time after a session finishes. Finally,
when the last session is finished, the controller collects all
the counter maps, processes results and replies to the sched-
uler.

Admittedly, determining the connectivity between a group
of nodes that belong to a non RF isolated testbed, immedi-
ately before using them, does not necessarily mean that the
observed quality of all the links will remain stable when the
actual experiment is deployed. At least, TLQAP increases
the probability that the chosen nodes will satisfy the ex-
periment needs. To further strengthen this probability, we
have developed a mysql based history log for the quality
of each testbed link on all available channels. Each time
TLQAP is deployed and results are collected and processed,
the database is inquired for the quality of the chosen links on
each channel around this time of day and for the past week.
If the link quality and/or channel does not appear to have
stable availability, the system tries to find a substitute node
if it is possible. After this process is finished, the database is
populated with the current link quality measurements that
have been recorded by TLQAP which will be used for future
reference. In order to increase the density of the history log
and improve its validity, we schedule TLQAP sessions for all
the idle testbed nodes and channels, every fifteen minutes,
for the sole purpose of expanding the history log.

4. EVALUATION
To evaluate TLQAP we have used our OMF [14] testbed

that is deployed on the main building of our department
which is located in the center of Volos city in Greece. The
testbed currently features a total of 9 nodes which are placed
both outdoors and indoors. Around the testbed area and out
of the testbed context, are independently operating 56 access
points which are located in the nearby buildings. Notably,
most of the neighbors use 802.11g channels during business
hours. Below we describe our testbed nodes and organi-

zation in detail and we then present and compare TLQAP
system with the existing bandwidth measurement tools ap-
proach, that could have been used instead on this testbed.

4.1 Testbed Description
Our testbed is comprised of ORBIT-like nodes, as de-

picted in Figure 3(b). More specifically, in Figure 3(a) we
can see a diagram of an ORBIT node design. Each node con-
sists of a 1GHz VIA C3 processor, 512MB of RAM, 40GB of
hard disk, two ethernet ports and two miniPCI slots which
are used to host two 5212 Atheros WiFi cards.

All the nodes are connected through wired Ethernet with
the testbed’s server - console. On console we have all the
required testbed services running. These services are both
network services, such as Dynamic Host Configuration Pro-
tocol (DHCP) server which gives IP address to the nodes,
Domain Name System (DNS) server which gives names to
the nodes, Network File System (NFS) server and OMF ser-
vices. We also maintain a web server where we keep the
web interface of our scheduler. On this server, we also keep
some scripts mandatory for remotely booking the nodes and
a MySQL server for keeping records of the testbed status at
each slot. More information about our testbed (e.g. node
connectivity graph) can be found on our web site [2].

4.2 Using an existing measurement tool
The most popular approach to assess the quality of a wire-

less link between testbed nodes is using a bandwidth mea-
surement application. Unfortunately, in this approach, the
default network stack allows packet broadcasts to be trans-
mitted only at the basic rate, so the TLQAP style transmit-
receive sessions cannot be used with these tools. Therefore,
for each node that is within range, the classic single ad-
dressed transmit-receive flows must be used. In our case we
used the iperf tool as follows. For every fixed rate, channel
and power combination we deploy iperf transmitter-receiver
pairs for UDP unicasts on the respective nodes and for each
link direction. Iperf provides results every second and usu-
ally needs to receive packets at least for three seconds to
start reporting the actual throughput.

Depending on the current fixed rate, the iperf packet gen-
erator is configured to saturate the MAC layer. We have seen
in practice, after performing numerous experiments on free
channels, that for iperf default configuration the observed
application level throughput of a high quality single link di-
rection between two testbed nodes, is 55% of the (fixed)
transmission rate. Therefore, if the iperf reported through-
put is less than 55% of the used transmission rate we assume
that the channel is not totally free. The free channel ratio is
calculated by dividing the observed throughput by the max-
imum throughput that can be observed in practice (55% of
the transmission rate). Moreover, iperf receiver reports the
actual packet delivery ratio and during the measurements
we have disabled 802.11 support for low level acknowledge-
ments and retransmissions.

4.3 Experiments and Results
We performed a series of experiments in order to: i)verify

that TLQAP properly determines PDR and channel utiliza-
tion, ii) evaluate the contribution of the history log and iii)
assess the scalability of TLQAP approach. Moreover, in
some cases we compare TLQAP with the iperf approach.
Note that our testbed nodes are not tightly located, so some

(a) ORBIT Node Schema (b) ORBIT Node

Figure 3: ORBIT-Like Nodes

Figure 4: TLQAP and Iperf PDR measurements at
nodes 2-9 on a free channel and fixed rate. The
transmitter is node 1

nodes cannot directly communicate and channel interference
may not be the same for all the nodes as well.

We first examined the reported PDR using both TLQAP
and iperf approaches on channel 48. We chose this chan-
nel because it is not being used by any neighbour and it is
guaranteed to be interference free from any factor that is
not under the testbed administration control. In figure 4 we
present the packet delivery ratio (PDR) when node 1 trans-
mits to the neighbors 500 1400 byte packets using TLQAP
at 54Mbits/sec on channel 48. We have repeated the exper-
iment using iperf reports for the same rate and channel and
we depict the results on the same figure. As expected, there
are no serious PDR deviations between the two approaches
and they both determine it accurately.

The next figure depicts the channel 6 utilization by testbed
external devices which is determined independently at each
node. We have employed the history log to improve the
probability that a channel will be available, because wire-
less network traffic usually follows a steady pattern during
working hours on business days. Of course, history log can
only provide rough estimations. In figure 5 we present the
average channel 6 utilization that has been observed for two
consecutive weeks, only on business days, in the time frame
between 11:00a.m and 11:20a.m. On average, 30% of chan-
nel 6 is occupied each second for testbed external transmis-
sions. For these measurements we transmitted 1000 packets
during each TLQAP session.

Figure 5: Average channel 6 utilization by testbed
external devices for 2 consecutive weeks. (measured
at each node between 11:00a.m and 11.20a.m)

The basic advantages of TLQAP approach over the appli-
cation level measuring tools regarding the measuring delay
are i) the use of a single session per node, transmission rate
and channel and ii) the fact that the layer 2 implementation
can accurately determine when actual packet transmission
takes place and allows a fixed number of consecutive packet
transmissions to provide accurate delay measurements.

On the contrary, application level bandwidth measure-
ment tools need to generate traffic that saturates all the
lower layer buffering mechanisms and to observe the recep-
tion side for a fixed amount of time to make sure that they
are capturing the actual throughput. Iperf needs 3 seconds
for each link direction and, for example, for all 9 nodes of
our experimental setup 3024 seconds are required to exhaus-
tively check all links on 14 channels and 9 different rates
using fixed transmission power.

In figure 6 , we present the TLQAP delay for the same
example and for different sizes of session packet numbers.
As it is depicted, if we use 1000 packets during each broad-
cast session TLQAP approach is 4 times faster than iperf
and produces the same results. Note that during these ex-
periments, we did not employ any additional support for the
iperf approach to examine if there is any connectivity at all
(e.g. via ping) between two nodes, which would avoid per-
forming measurements between nodes that are not directly
linked. As we have explained, TLQAP performs all broad-
casts at all available rates anyway, even for the sole purpose

Figure 6: TLQAP measured delay for inspecting link
of 9 nodes on 14 channels and 9 different rates

of determining channel utilization.

5. RELATED WORK
Adhoc routing protocols for wireless mesh networks, em-

ploy link quality metrics that can be updated quickly with-
out being particularly intrusive and determine the best rout-
ing path to a destination. Most popular of these metrics
like ETX [9], mETX [13], ETT [10] are based on the PDR
and/or the average packet transmission delay, which are
the only measurements that must be performed at each
node for all its immediate links. Exactly as it happens
with TLQAP, these routing protocols calculate PDR and
transmission delay by periodically transmitting the so called
packet probes at all available rates, without using 802.11
level acks and retransmissions. Increasing the probing fre-
quency, results in more accurate estimations but also in-
creases the bandwidth overhead. For this reason, in routing
protocols, packet probes are emitted from each node every
few seconds. Since TLQAP has been designed for offline
measurements it can use relatively large number of consec-
utive probe packet broadcasts that increase the accuracy
of the estimations and, most importantly, better determine
channel traffic. Moreover, designers of link quality metrics
can take advantage of TLQAP feedback and use it as a ref-
erence to evaluate the performance of their design during an
experiment.

In [11] authors determine channel traffic by sending back-
to-back just two probes and then measure their dispersion.
They have observed in their experiments strong correlation
between probe packet dispersion and traffic in the air. While
we can use this approach in TLQAP to determine channel
traffic by implementing the proposed probe priority queue
scheme, we decided to estimate the average dispersion of
large sets of consecutive packet probes. We believe that
this approach enhances the offline measurements because it
captures activity for a wider time frame. This is also why
we have used history log as well.

6. CONCLUSION
Distributing the network bandwidth between experiments

on wireless testbeds can be a very complicated task, espe-
cially when the testbed nodes are not operating in an RF
isolated environment. The respective management frame-
works should employ support to frequently inspect the link
quality between the nodes. On testbeds where the nodes are
in fixed locations, a history log of quality measurements can

significantly increase the probability that a link will retain
the measured quality during the actual experiment. What is
more important, the testbed user has a good reference of the
achievable bandwidth between the reserved nodes and can
better evaluate the observed performance of the deployed ex-
periment. Management framework extensions that measure
performance should feature a low level subsystem that can
bypass the network stack buffering and retransmission mech-
anisms, to make more accurate measurements and perform
faster. TLQAP system design addresses the aforementioned
considerations.

7. REFERENCES
[1] http://madwifi.org/.

[2] http://nitlab.inf.uth.gr/.

[3] http://www.emulab.net/.

[4] http://www.planet-lab.org/.

[5] http://www.winlab.rutgers.edu/.

[6] A. Anadiotis, A. Apostolaras, T. Korakis, and
L. Tassiulas. A new scheme for slicing over
experimental wireless testbeds. Technical report,
University of Thessaly, 2009.

[7] J. Bicket, D. Aguayo, S. Biswas, and R. Morris.
Architecture and evaluation of an unplanned 802.11b
mesh network. In MobiCom ’05: Proceedings of the
11th annual international conference on Mobile
computing and networking, 2005.

[8] I. Broustis, J. Eriksson, S. V. Krishnamurthy, and
M. Faloutsos. A blueprint for a manageable and
affordable wireless testbed: Design, pitfalls and lessons
learned. In IEEE International Conference on
Testbeds and Research Infrastructures for the
Development of Networks and Communities.

[9] D. S. J. D. Couto, R. Morris, D. Aguayo, and
J. Bicket. A high-throughput path metric for
multi-hop wireless routing. Wireless Networking,
11(4), 2005.

[10] R. Draves, J. Padhye, and B. Zill. Routing in
multi-radio, multi-hop wireless mesh networks. In
MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and
networking. ACM, 2004.

[11] M. A. Ergin and M. Gruteser. Using packet probes for
available bandwidth estimation: a wireless testbed
experience. In WiNTECH ’06: Proceedings of the 1st
international workshop on Wireless network testbeds,
experimental evaluation & characterization. ACM.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems, 2000.

[13] C. Koksal and H. Balakrishnan. Quality-aware routing
metrics for time-varying wireless mesh networks. IEEE
Selected Areas In Communications, 2006.

[14] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the orbit radio grid testbed
for evaluation of next-generation wireless network
protocols. In IEEE Wireless Communications and
Networking Conference (WCNC 2005).

