Transmission Procedure

ath_hardstart

File: ath/if_ath.c


static int ath_hardstart(struct sk_buf *skb, struct net_device *dev)

skb is a pointer to a structure that includes a buffer, where the data of a packet is located. Every packet is associated with an instance of the struct sk_buff.
dev points to all necessary information about a device. An example of device is a wireless card.
Returns properly zero. In case there is any problem, then returns a negative number.
I don’t consider about the case of fast frames. So I assume that the constant ATH_SUPERG_FF = 0.
1. The first check is about the device. The function checks if it is not operating (or running) or if it is detached, so it doesn’t process interrupts. In this case the function prints an appropriate message and then returns –ENETDOWN, which means that the interface has since been taken down.
2. STAILQ_INIT(&bf_head);

The function initializes a list of instances of the structure ath_buf which is called bf_head. 
3. sc = dev->priv and cb = skb->cb
So sc describes dev and cb controls skb. By using the cb, the function checks if the packet, that is included in the skb, is raw. If it is raw, then it calls the macro...


ATH_HARDSTART_GET_TX_BUF_WITH_LOCK. This macro fills the bf with the first instance of the list sc->sc_txbuf. The list sc->sc_txbuf includes instances of the ath_buf, which are going to be used for transmitted packets. Also, the bf is inserted in the list bf_head.

Finally it calls the function ath_tx_startraw which associates the bf with the skb, and then it sends it via the device dev. The association is succeeded in this way: bf->bf_skb = skb. The function returns whatever ath_tx_startraw returns.
4. eh = (struct ether_header *) skb->data;

eh points to the start of the data that is included in the skb. At the start of the packet’s data there is the Ethernet header, which is pushed to the skb by kernel. The kernel doesn’t recognize any other header except for Ethernet’s. It is up to the driver to replace this header, with the appropriate one...
5. ni = cb -> ni;
In this way, ni describes the receiver of the packet skb.

If this pointer is null, then the receiver is unknown and the function fails (goto hardstart_fail )
6. ATH_HARDSTART_GET_TX_BUF_WITH_LOCK

It fills the bf as I described before...
7. skb = ieee80211_encap(ni, skb, &framecnt);

This function does the necessary encapsulation of the packet. It takes the packet’s skb and the receiver node ni, and returns the new encapsulated skb. If the skb, which the ieee80211_encap received, had too much data, then the ieee80211_encap has to fragment the skb and produce new instances of the sk_buff, in a way that each of them will have a part of the whole data. Each of these new instances is called also frame. So the function returns also the number of the frames that it has produced, via the variable framecnt.

In case of fragmentation, the skb that the function returns is the first of the list, which contains all the instances that have the whole data. Each instance shows the follow via the pointer next (skb_follow = skb->next).
8. Then checks if the returned skb is null. In this case there is a problem and the function fails.
9. Then we have 2 cases... The packet has been fragmented (if framecnt == 1) or not (if framecnt > 1).
10. If there was fragmentation, then we get new instances from the sc->sc_txbuf, and we insert them in the list bf_head. bf is already there, because of the macro ATH_HARDSTART_GET_TX_BUF_WITH_LOCK. 
The function gets (framecnt-1) instances of the ath_buf, because it has to associate the same number of new frames (or instances of the sk_buff).
11. Also it calls the ieee80211_ref_node(ni). It should be called every time that a new reference to the node ni arises. So in this case, because of the existence of (framecnt-1) new frames, which must be sent to the node ni, the function increases the same the reference-counter of ni.
12. Then the function checks if there were enough instances of the ath_buf in the list sc->sc_txbuf. If not, then the function fails.
13. Then the function puts the first instance of the list bf_head to the variable bf and then removes it from the list. Also, it keeps in the variable nextfraglen the length of the frame which follows the skb. After, the function calls the... 

ath_tx_start(dev, ni, bf, skb, nextfraglen). 

The ath_tx_start associates the bf with the skb and the receiver node ni and it sends the frame to the physical layer, ready for transmission.


No success of the ath_tx_start means that ath_hardstart will fail.
14. The next step is to replace the skb with the skb->next. So the function is ready to repeat the previous step, until no frame remains in the list.
15. But if we didn’t have any fragmentation, then the function calls only one time the function ath_tx_start(dev, ni, bf, skb, 0). It is natural because there is only one skb and bf.
16. The function returns properly 0.
17. In case of failure, the function empties the list bf_head and puts again its instances in the previous list sc->sc_txbuf. Also, it decreases the references on the node ni and releases the frames which have been produced due to the fragmentation.

Page 3


