Reception Procedure

ath_rx_tasklet

File: ath/if_ath.c

static void ath_rx_tasklet(TQUEUE_ARG data)

data actually points to the net_device structure that received the data.
I don’t consider about the case of fast frames. So I assume that the constant ATH_SUPERG_FF = 0
1. So, due to the meaning of the data, 

struct net_device *dev = (struct net_device *)data
2. ath_softc *sc = dev->priv is a structure that describes the device dev. From this structure the function can access the reception buffer list of dev... sc->sc_rxbuf. 
3. All the action of the function is actually inside a large do-while. In every repetition the function does the follows...
4. bf points to an instance of the structure ath_buf and more specifically to the first of the list sc->sc_rxbuf.

5. The function checks if the bf has already been processed by the hardware or HAL (ATH_BUFSTATUS_DONE). If not, it stops its process.

6. ds (struct ath_desc) is associated with bf, so it describes bf. If ds is self-linked, then the function stops again its process.

7. skb (struct sk_buff) gets the instance that is associated with bf. If it is null (impossible) then the function gets the follow instance of sc->sc_rxbuf for bf, and repeats again whatever it has done.

8. If user wants debug, then the function prints the bf.

9. Until the label rx_accept, there is code which checks ds, if the packet is invalid or not and goes to the appropriate label (rx_next or rx_accept). It’s obvious whatever this code checks... so there is no further explanation about this!
10. len = ds->ds_rxstat.rs_datalen. The variable len keeps the length of the received package.
11. The function sync and unmap the frame, which means that it writes back the frame from DMA to the memory. Then it disassociates bf and skb.
12. Then the function informs the statistics of the device that are kept in sc. These statistics are about the antenna, which has been used, the packets and the data that has been received.
13. The function puts in skb the appropriate length len. Also, skb->protocol = ETH_P_CONTROL.
14. Then, it checks if the device has VAP’s in monitor mode. If yes, then it checks if the packet’s length is less than the ACK’s (Acknowledgment’s Packet) length. In this case the function characterizes the packet as invalid and goes to label goto_next. If it is invalid, then the function delivers it to the function ath_rx_capture, which is for monitor use only. All the VAP’s, which are in monitor mode, take this packet and capture it. So after this, if all the VAP’s are in monitor mode, skb is useless and the function has to free it and go to label goto_next.
15. skb_trim(skb, skb->len - IEEE80211_CRC_LEN)
skb’s length is decreased because there is no need for the CRC field anymore.
16. It checks if skb has valid length. If it is shorter than the length of the smallest frame, then the function rejects it. 
17. Then the function checks if the reception was the basic operation (no Fast Frame nor UAPSD nor...) and the device requires debug. If yes, then it calls the function ieee80211_dump_pkt, which prints the packet.
18. Then, the function checks if the packet has key and then recognizes the sender via this key information. It keeps the information about the sender in the variable ni (struct ieee80211_node), and then it passes this information to a similar, more specific variable an (struct ath_node). Simultaneously, it increases the reference to this node.
Then the function runs the macro ATH_RSSI_LPF(???), and after this it calls...
type = ieee80211_input(ni, skb, ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp)
This call delivers the packet to the upper layer. Finally, the function decreases the reference to the node ni.
19. If the packet has no key, then the function finds the server ni via the call of the function ieee80211_find_rxnode. This call detects the sender by using the packet’s data. If the call finds a node, then the function does the same process with the above case... In addition it updates the key->node mapping table, if the node finally supports a key. Otherwise, the function calls...
type=ieee80211_input_all(ic, skb, ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp)
This function calls the ieee80211_input many times, by passing nodes which describe the related BSSs instead of a station. 
20. Then the function checks if the default receiving antenna has been rejected more than 3 continuously times. If yes, then it makes the last used antenna (that has been used for this reception) the default antenna.
21. The last check is about the led...

22. The label goto_next starts the movement of the first instance of the list 

sc->sc_rxbuf to the end of the list. Now bf points to the new head of the list. Also, the function characterizes the previous head instance as not processed by the HAL (~ATH_BUFSTATUS_DONE). 
23. Here is the end of the do-while. In this point the called-function ath_rxbuf_init checks if the new head bf is associated with any instance of the structure sk_buff, and if not the function associates it with a new instance. If it is not possible, then the called-function returns a negative integer, which signs the end of the repetitions of the do-while.
24. The last thing which this function does outside of the do-while, is the rx signal state monitoring. It calls the function ath_hal_rxmonitor.

Page 3
17/7/2007

