Transmission Procedure

ath_tx_start

File: ath/if_ath.c

static int * ath_tx_start

(struct ieee80211_dev *dev, struct ieee80211_node *ni,

struct ath_buf *bf, struct sk_buf *skb, int nextfraglen)
dev is a pointer to a structure that describes the underlying device that is going to sent the packet.
ni is a pointer to a structure that describes the receiver node.

bf points to a structure that is going to wrap the following structure skb.
skb is a pointer to a structure that includes a buffer, where the data of a packet is located. Each packet is associated with an instance of the structure sk_buff.
nextfraglen is the length of the follow packet, if these packets are part of a fragmented packet.
Returns properly zero. In case there is any problem, then returns a negative number.
I don’t consider about the case of fast frames. So I assume that the constant ATH_SUPERG_FF = 0.
1. wh points to the frame header of the packet skb.
isprot is true if the packet is protected.

ismcast is true if the transmission is going to be multicast.

hdrlen has the length of the header. The function calls ieee80211_anyhdrsize(wh), which is a simple function defined on ieee80211_proto.h
istxfrag is true if the packet belongs to a sequence of fragmented frames and it is not the last one.
pktlen has the length of the packet skb.
2. pktlen -= (hdrlen & 3) subtracts the bytes of the padding.
3. Then it checks isprot to see if there is protection and depending of this, it fills appropriately the variable keyix.
4. It adds to the packet’s length the IEEE80211_CRC_LEN. This length is necessary for the CRC field of the frame. This field is going to be filled by the hardware, not for the driver.
5. bf->bf_skbaddr = bus_map_single
 (sc->sc_bdev, skb->data, pktlen, BUS_DMA_TODEVICE)
It copies the skb’s data (from RAM kernel’s memory) to the memory of the device (bus) sc->sc_bdev.

6. bf->bf_skb = skb & bf->bf_node = ni associate the bf with the skb and the ni.
7. sc=dev->priv, sc has information for the dev. Finally, by doing
rt = sc->sc_currates, rt (HAL_RATE_TABLE) has the current rates that dev is able to use.
8. Then the function fills the variable shortPreamble with the value AH_TRUE or AH_FALSE.
9. an = ATH_NODE(ni) is another driver-specific expression of the ni. an points to an instance of the structure ath_node and it can keep more information.
10. flag is a variable that keeps information about the HAL. The function informs gradually this variable. Now, flags takes the value HAL_TXDESC_CLRDMASK

11. a) If skb is a Management packet (IEEE80211_FC0_TYPE_MGT) then the function checks if it is a beacon, probe resp, atim or normal and fills the atype appropriately. atype is a variable of type (HAL_PKT_TYPE) and it passes to the HAL the necessary information about the packet. Then it tries to compute the txrate, which is the rate of transmission. It fills the rix (index of the table rt) with the value that shows to the minimum rate. So the function then uses rix and fills the txrate with the smallest rate. If also shortPreamble is true, then the function adjusts the txrate. Also, try0 is set to ATH_TXMAXTRY and then we define which priority queue will be used for the transmission. This information can be kept on the variable txq (struct ath_txq). The function will push the packet to the Voice queue if ni uses QoS or to the Best Effort queue if not.
b) If skb is a Control packet (IEEE80211_FC0_TYPE_CTL) then atype is filled with the value of pspoll subtype. Then the function follows the same actions and choices as before...
c) If skb is a Data packet (IEEE80211_FC0_TYPE_DATA) then atype is filled with the value of normal subtype. If it is multicast packet, then the function fills txrate using the rix = ath_tx_findindex(rt, vap->iv_mcast_rate). Obviously, rix takes its value considering only the vap. Again the function adjusts this rate considering shortPreamble and fills the try0 with ATH_TXMAXTRY. But if it is unicast, then the function calls the Rate Adaptation Algorithm (ath_rate_findrate) which computes and returns all the variables that I have mentioned before (rix, txrate, ...)
Finally, if the packet is not U-APSD (power save), and if it supports QoS, then considering to its priority, the function fills the variable txq appropriately. If it does not support QoS, then it goes to the default priority Best Effort queue.

d) If the packet has not any of these types, then the function fails and returns
–EIO.
12. If the packet has multicast direction and one or more stations are served in power-save mode (or) if there is some multicast data waiting on the multicast queue, then the function changes the txp in a way that it will point to the multicast queue.
13. a lot of details....
14. The function estimates the duration of the transmission of the packet, and refreshes the dur field of its frame.
15. a lot of details....
16. ath_tx_txqaddbuf(sc, ni, txq, bf, ds, pktlen)

This function adds the packet to the appropriate queue txq.

Page 3
17/7/2007

