A Brief Introduction To The Tx/Rx Framework in Madwifi
Author: Randolph.Yu.Yao Apr.27 2008

1. module_init
there are 18 modules in the madwifi source:
module_init(init_ath_ahb)
// Advanced High-performance Bus?
module_init(init_ath_pci)

module_init(init_ath_hal)
// Hardware Access Layer (HAL) [image: image1.png]Applications

orgfreedesktop Hal APt
(queries, notifications, operations)

Device Tormation
Fles

HAL daemon Callouts
(programs that run on device add/remove)

Device
Access ‘addons

(daemons tied to the life cycle of a device)

Methods
(programs run when methods are called)

Os/Kernel interfaces
(detection, hotplug, monitoring)

05 kernel and base OS services
(e.g. Linux 2.6 + linux-hotplug + udev)

module_init(init_wlan)

module_init(init_scanner_ap)

module_init(init_scanner_sta)
module_init(init_ath_rate_amrr)

module_init(init_ath_minstrel_init)

module_init(init_ath_rate_onoe)

module_init(init_ath_rate_sample)
module_init(init_ieee80211_acl)

module_init(init_ieee80211_xauth)
module_init(init_crypto_ccmp)

module_init(init_crypto_ccmp_test)
module_init(init_crypto_tkip)

module_init(init_crypto_tkip_test)
module_init(init_crypto_wep)

module_init(init_crypto_wep_test)

2. Taking module ath_pci as an example:
In if_ath_pci.c:
module_init(init_ath_pci);
/* the kernel macro module_init inform the kernel that the function init_ath_pci should be invoked when then module is loaded into the kernel */.
Note : this module will be compiled as ath_pci.ko, which can be loaded into the kernel with other dependent modules by command “ modprobe ath_pci”
3. Function init_ath_pci
In function init_ath_pci(void){… }
pci_register_driver(&ath_pci_driver);

// the function register a pci_driver structure, which is defined as:

static struct pci_driver ath_pci_driver = {

.name

= "ath_pci",

.id_table
= ath_pci_id_table,

.probe

= ath_pci_probe,

.remove

= ath_pci_remove,

};
Here we see after the pci device is inserted into the system, the function ath_pci_probe will be invoked

4. Function ath_pci_probe (struct pci_dev *pdev, const struct pci_device_id *id)
a. Device_id include information such as AR5212, AR5211..
b. pci_enable_device(pdev)
// pdev is a pointer to the pci_dev structure. We need to fill in the pdev with appropriate parameter first. Initialize device before it's used by a driver. Ask low-level code to enable I/O and memory. Wake up the device if it was suspended
c. mem = ioremap(phymem, pci_resource_len(pdev, 0));

// map bus memory into CPU space (CPU accessible)
d. dev = alloc_netdev(sizeof(struct ath_pci_softc), "wifi%d", ether_setup);
// allocate memory space for the net device dynamically by the kernel. This could be passed as parameter to many functions
Here sizeof(struct ath_pci_softc) is the size of the net_device’s “private data” area; which is allocated along with the net_device structure
“wifi%d” is the name of this interface
ether_setup an initialization function that is called to set up the rest of the net_device structure. the kernel takes care of some Ethernetwide defaults through the ether_setup function
e.
sc = dev->priv;

sc->aps_sc.sc_dev = dev;

sc->aps_sc.sc_iobase = mem;

sc->aps_sc.sc_invalid = 1;….

Fill in the “private data” (ath_softc), the associated dev, the address of the device (sc_iobase), if it is been detached (sc_invalid), ….
f. dev->irq = pdev->irq;
dev->type = ARPHRD_IEEE80211;
SET_MODULE_OWNER(dev);

SET_NETDEV_DEV(dev, &pdev->dev);….
Fill in the dev (the net_device structure)
g. request_irq(pdev->irq, ath_intr, IRQF_SHARED, dev->name, dev)
Installing an interrupt handler. The hardware interrupts the processor to signal one of two possible events: a new packet has arrived or transmission of an outgoing packet is complete. If there is an interrupt, the function ath_intr will be invoked.

In ath_intr, the function figures out the reason for the interrupt and dispatch the tasks.

if (status & HAL_INT_RX) {

ath_uapsd_processtriggers(sc);

/* Get the noise floor data in interrupt context as we can't get it

 * per frame, so we need to get it as soon as possible (i.e. the tasklet

 * might take too long to fire */

ath_hal_process_noisefloor(ah);

sc->sc_channoise = ath_hal_get_channel_noise(ah, &(sc->sc_curchan));

ATH_SCHEDULE_TQUEUE(&sc->sc_rxtq, &needmark);

}

if (status & HAL_INT_TX) {

ATH_SCHEDULE_TQUEUE(&sc->sc_txtq, &needmark);

}
h. ath_attach(vdevice, dev, NULL)
fill ath specified parameters to dev and dev->priv (ath_softc sc)
including:

ATH_INIT_TQUEUE(&sc->sc_rxtq,
 ath_rx_tasklet,
dev);

ATH_INIT_TQUEUE(&sc->sc_txtq,
 ath_tx_tasklet,
dev);

dev->open = ath_init;

dev->stop = ath_stop;

dev->hard_start_xmit = ath_hardstart;

dev->tx_timeout = ath_tx_timeout;…
5. int ath_attach(u_int16_t, struct net_device *, HAL_BUS_TAG);

int ath_detach(struct net_device *);

void ath_resume(struct net_device *);

void ath_suspend(struct net_device *);
a.
ATH_INIT_TQUEUE(&sc->sc_rxtq,
 ath_rx_tasklet,
dev);

ATH_INIT_TQUEUE(&sc->sc_txtq,
 ath_tx_tasklet,
dev);
#define ATH_INIT_TQUEUE(_tq, _routine, _data)

\
INIT_TQUEUE(_tq, _routine, _data)
ath_rx_tasklet(TQUEUE_ARG data)
ath_tx_tasklet(TQUEUE_ARG data) / * Deferred processing of transmit interrupt.*/
Put the routine (function) ath_rx_tasklet into a task queue (tq_struct sc->sc_rxtq). The routine will be called when this tq_struct is processed by the task scheduler of the kernel.
Note: during interrupt processing, device drivers should not spend too much time handling interrupts as, during this time, nothing else in the system can run. There is often some work that could just as well be done later on. (just put in the task queue)
b. ah = _ath_hal_attach(devid, sc, tag, sc->sc_iobase, &status);
HAL stands for hardware access layer, which offers hardware access programming interfaces. Here we attach the device with an ath_hal structure for hardware-related operations.
c. skip.. skip …skip again …
d. initialize sc (ath_softc)
e. dev->open = ath_init;
dev->stop = ath_stop;

dev->hard_start_xmit = ath_hardstart;
dev->tx_timeout = ath_tx_timeout;

dev->watchdog_timeo = 5 * HZ;

/* XXX */

dev->set_multicast_list = ath_mode_init;

dev->do_ioctl = ath_ioctl;

dev->get_stats = ath_getstats;

dev->set_mac_address = ath_set_mac_address;

dev->change_mtu = ath_change_mtu;

dev->tx_queue_len = ATH_TXBUF - 1;

/* 1 for mgmt frame */
setup up dev

· int (*open)(struct net_device *dev);
Opens the interface. The interface is opened whenever ifconfig activates it. The open method should register any system resource it needs (I/O ports, IRQ, DMA, etc.), turn on the hardware, and perform any other setup your device requires.
· int (*stop)(struct net_device *dev);
Stops the interface. The interface is stopped when it is brought down. This function should reverse operations performed at open time.
· void (*tx_timeout)(struct net_device *dev);
Method called by the networking code when a packet transmission fails to complete within a reasonable period, on the assumption that an interrupt has been missed or the interface has locked up. It should handle the problem and resume packet transmission.
· int watchdog_timeo;
The minimum time (in jiffies) that should pass before the networking layer decides that a transmission timeout has occurred and calls the driver's tx_timeout function.
· int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);
Method that initiates the transmission of a packet. Whenever the kernel needs to transmit a data packet, it calls the driver's hard_start_transmit method to put the data on an outgoing queue (ath_hardstart-> ath_tx_start-> ath_tx_txqaddbuf) .In the end the hardware-related operation is performed through HAL API (ath_hal_txstart). The full packet (protocol headers and all) is contained in a socket buffer (sk_buff) structure.
· int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
Performs interface-specific ioctl commands. (Implementation of those commands is described in the section “Custom ioctl Commands.”) The corresponding field in struct net_device can be left as NULL if the interface doesn’t need any interface-specific commands.
· int (*set_mac_address)(struct net_device *dev, void *addr);
Function that can be implemented if the interface supports the ability to change its hardware address. Many interfaces don’t support this ability at all. Others use the default eth_mac_addr implementation (from drivers/net/net_init.c). eth_mac_addr only copies the new address into dev->dev_addr, and it does so only if the interface is not running. Drivers that use eth_mac_addr should set the hardware MAC address from dev->dev_addr in their open method.
· unsigned long tx_queue_len;
The maximum number of frames that can be queued on the device's transmission queue.
f. Set up ieee80211com ic
6. ath_intr(int irq, void *dev_id)
here we only pay attention to the reception progress.
if (status & HAL_INT_RX) {

ath_uapsd_processtriggers(sc);

/* Get the noise floor data in interrupt context as we can't get it

 * per frame, so we need to get it as soon as possible (i.e. the tasklet

 * might take too long to fire */

ath_hal_process_noisefloor(ah);

sc->sc_channoise = ath_hal_get_channel_noise(ah, &(sc->sc_curchan));

ATH_SCHEDULE_TQUEUE(&sc->sc_rxtq, &needmark);

}
Note: during interrupt processing, device drivers should not spend too much time handling interrupts as, during this time, nothing else in the system can run. There is often some work that could just as well be done later on. (just put in the task queue). The routine ath_rx_tasklet() is put into a task queue (tq_struct sc->sc_rxtq) before (like: ATH_INIT_TQUEUE(&sc->sc_rxtq, ath_rx_tasklet,
dev)
Here ATH_SCHEDULE_TQUEUE(&sc->sc_rxtq, &needmark) tells the task scheduler that a new task need to be dealt with. The routine will be called when this tq_struct is processed by the task scheduler of the kernel. So the function ath_rx_tasklet() will run as soon as in its turn, and “dev” will be passed as a parameter to ath_rx_tasklet()
PAGE
5

