Transmission Procedure

ieee80211_encap

File: net80211/ieee80211_output.c

struct sk_buff * ieee80211_encap
(struct ieee80211_node *ni, struct sk_buf *skb, int *framecnt)
ni is a pointer to a structure that describes the receiver node.
skb is a pointer to a structure that includes a buffer, where the data of a packet is located. Every packet is associated with an instance of the structure sk_buff.
framecnt points to an integer variable, where the function is responsible to return the number of the frames that it will produce.
Returns the new instance of the structure sk_buff, which is the head of a list of similar instances in case that the skb has been fragmented. The whole packet is included correspondingly in the skb or the following list.
I don’t consider about the case of fast frames. So I assume that the constant ATH_SUPERG_FF = 0
1. skb_pull(skb, sizeof(struct ether_header));
The function pulls the inappropriate Ethernet header of the packet. This header is inserted by kernel by default. Kernel recognizes only the Ethernet, no the 802.11 protocol. So the function has to make a translation. This is why previously the function kept a copy of this header in the variable eh (pointer of struct ether_header).
2. vap=ni->vap is pointer to an instance of the structure ieee80211_vap. (I suppose that) vap points to the virtual AP that the node ni is associated with, and exists on the node where this function works. So if this vap requires PRIVACY, the function has to use a key (instance of struct ieee80211_key). Otherwise, the key is null.
3. If the node enables QoS (Quality of Service or Using priorities) and the type of the Ethernet is different to the ETHERTYPE_PAE, then the function keeps in the variable addqos one of the 4 values...

WME_AC_BE = 0 (Best Effort), WME_AC_BK = 1 (Background),
WME_AC_VI = 2 (Video), WME_AC_VO = 3 (Voice)
Otherwise, addqos = 0 or WME_AC_BE
4. hdrsize is the length of the header that the function is going to pull in the skb. If addqos is Best effort, then the function is going to use the simpler header struct ieee80211_frame, and the hdrsize takes the appropriate value. Otherwise, it will use the header struct ieee80211_qosframe and the hdrsize increases correspondingly.
5. a) If vap (or more abstractly the node where the function runs) operates in an ad-hoc mode, then the variable use4addr remains on 0 and we check the destination address of eh. If it is a multicast address then the transmission is multicast and the ismulticast takes the appropriate value.
b) If it operates like WDS (Wireless Distribution System) link, which connects actually 2 APs, then the function increases the hdrsize by adding the length of an extra address (IEEE80211_ADDR_LEN), use4addr=1 and checks the MAC address of the ni to learn if the transmission is multicast.
c) If it is an AP, then if the destination is not the node ni and the destination address is not multicast, the function operates in the same way with the case (b). In any other case, the function operates in the way of the case (a).
d) If it is a Station, then we have again 2 cases:

If the address of the source is different of the address of the node (=source is not destination) and the 4th address is allowed, then the function acts as in the case (b). In addition, it adds a WDS entry to the station VAP.
Else the function checks the BSSID of the node ni, to see if the transmission is multicast. (The BSSID is actually the MAC address of the AP to which the node is associated)
6. hdrsize_nopad is the size of the packet without padding. If ni allows padding (via ic = ni->ic), then the hdrsize will take the new value that is returned by

roundup(hdrsize, sizeof(u_int32_t))
7. skb = ieee80211_skbhdr_adjust(vap, hdrsize, key, skb, ismulticast)
This function computes the more space which needs the header (for the LLC) and it expands appropriately the head/tail room of the skb, basing on the hdrsize and the more space that is computed. It returns the new skb. If it’s null then the ieee80211_encap fails.
8. Then the function pushes to the skb all the necessary space for the LLC layer, and it fills this space...
9. datalen = skb->len, has the length of the skb (packet).
10. Then it pushes to the skb the necessary space for the frame header.
wh = (struct ieee80211_frame *) skb_push(skb, hdrsize);
wh points to the frame header of the packet.

The follow steps fill the fields of the frame format. These fields are illustrated in the Table 1 of the text-guide.
11. The first field of the frame is the FC (Frame Control). In this field the function declares that the version is 0 by default and the type of the packet is Data.

12. The second field is the DurID (Duration ID). It puts 0 by default.
13. The third field is the addresses... (look also Table 2)
If the packet uses 4th address then function puts in the FC DStoDS and
	Addr1
	(Receiver)
	MAC of the node ni

	Addr2
	(Transmitter)
	vap’s MAC (on function’s node)

	Addr3
	(Destination)
	Ethernet’s destination address

	Addr4
	(Source)
	Ethernet’s source address

Else....
a) If vap (or more abstractly the node where the function runs) operates in an ad-hoc mode, then puts in the FC NoDS and

	Addr1
	(Destination)
	Ethernet’s destination address

	Addr2
	(Source)
	Ethernet’s source address

	Addr3
	(BSSID)
	Vap’s BSSID (MAC of func’s node)

b) If it operates like a station, then puts in the FC toDS and

	Addr1
	(BSSID)
	ni’s BSSID (MAC of the AP)

	Addr2
	(Source)
	Ethernet’s source address

	Addr3
	(Destination)
	Ethernet’s destination address

c) If it operates like an AP, then puts in the FC fromDS and

	Addr1
	(Destination)
	Ethernet’s destination address

	Addr2
	(BSSID)
	ni’s BSSID (MAC of the AP)

	Addr3
	(Source)
	Ethernet’s source address

Also, if skb and ni requires power save, the function adjusts the FC (MORE_DATA).
d) If it operates like a WDS link, then puts in the FC DStoDS and

	Addr1
	(Receiver)
	MAC of the node ni

	Addr2
	(Transmitter)
	vap’s MAC (on function’s node)

	Addr3
	(Destination)
	Ethernet’s destination address

	Addr4
	(Source)
	Ethernet’s source address

e) Finally, if it is in monitor mode, then the function fails because it is appropriately for this node to send messages!
14. If vap is sleeping, then the FC is going to be adjusted properly (PWR_MGT).
15. The forth field is the seq (Sequence Control).
If the packet supports QoS, then instead of using the frame header wh, the function uses the header qwh (struct ieee80211_qosframe).
This header has an extra variable that is pointed by the variable qos. In this variable the function keeps the corresponding 11e header priority value (0...6) of the tid to the access class/queue value (0...3) of the skb->priority. Also, the function informs the FC that the frame supports QoS (SUBTYPE_QOS).
Then, it fills the field seq based on the appropriate tid.
Finally, it fills the field seq by using the variable ni->ni_txseqs[tid] if node supports QoS, or ni->ni_txseqs[0] if there is no QoS.
16. If the length of the packet is longer than the vap’s threshold of fragmentation (vap->iv_fragthreshold) and the transmission is not multicast, then the function does fragmentation... In this case:
17. Initialization of the variables pktlen=skb->len, ciphdrsize=0 and tailsize=IEEE80211_CRC_LEN (The packet requires space in the tail for the CRC information).
18. If there is key, the function adjusts the headroom and tailroom size by increasing ciphdrsize and tailsize appropriately.
19. The function keeps in the variable pdusize the size of the data (without the header) that will be included in a packet or a PDU (Protocol Data Unit), after the fragmentation. Finally, it computes (by division) how many packets will be produced, and keeps this information in the variable fragcnt and *framecnt.
20. Then the function produces (fragcnt-1) new instances of sk_buff and any of them points to the follow via the pointer next. Each instance has allocated the appropriate space (hdrsize + ciphdrsize + pdusize + tailsize) in the memory. If there is any problem on the allocation of some instance, then the function fails.
21. If there is no need for fragmentation, then the function skips the steps 17-20 and does this... *framecnt = fragcnt = 1.
22. Next, the function checks if there is key. In this case it does an extra check...
23. If function has done fragmentation, then it has to copy parts of the first packet to the new packets... So, firstly it adjusts the FC field of the skb that it has been fragmented (MORE_FRAG), and then the seq. Also, it initializes a new variable fragnum = 1.
24. The function initialize two variables:

offset = hdrsize + pdusize (meaning: The part of skb that has been copied)
datalen = (skb->len - hdrsize) – pdusize (meaning: The part that has to be copied)
On this moment, the offset exists on the skb. It will remain there, so it hasn’t to be copied to a new instance of the sk_buff.
25. The function informs the statistics information of the node ni, by running the macros IEEE80211_NODE_STAT(ni, tx_data),

 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, pdulen);
26. Next, the function takes one by one the new instances of the list framelist and firstly it copies the header of the skb to each of them. It just changes the seq by considering the fragnum, which is increased gradually. Secondly, it computes the length of the packet’s data. If this packet is the last one, maybe this length is less than pdusize. After, it copies the part of the skb’s data that is associated with each instance, to this instance. While the function does all these actions, simultaneously it refreshes appropriately the variables offset and datalen, and runs again the previous macros about the ni.
27. At the last packet, the function removes the label (MORE_FRAG) from the field FC. This happens because this label just alerts the receiver that another packet follows because of the fragmentation. But this is not true for the last packet.
28. It calls skb_trim(skb, hdrsize + pdusize), which decreases the data space of skb. skb needs space only for one pdu. Then, it connects the skb with framelist, by doing skb to point to framelist via the pointer next.
29. Unless the function has done fragmentation, then it skips all the steps 23 - 28 except for 25 (the macros about ni).

30. Finally it returns the new skb that is connected with framelist if there was fragmentation.
31. In case of failure the function frees all the space that has been allocated for skb and framelist and finally returns NULL.

Page 1
17/7/2007

