Reception Procedure

ieee80211_input

File: net80211/ieee80211_input.c

int ieee80211_input(

struct ieee80211_node *ni, struct sk_buff *skb, int rssi, u_int32_t rstamp)
ni is a pointer to a structure that describes the sender node.
skb is a pointer to a structure that includes a buffer, where the data of a packet is located. Every packet is associated with an instance of the struct sk_buff.
rssi is the power of the received signal
rstamp is the time stamp when the receiver got the signal.
Returns the type of the packet (Data, Management or Control). In case of any problem, it returns -1.
I don’t consider about the case of fast frames. So I assume that the constant ATH_SUPERG_FF = 0
1. The function initializes the u_int8_t variable type with the value -1.
2. If vap = ni->vap is in monitor mode, then the packet is discarded by this function. This also happens if the packet is shorter than the size of the smallest frame.
3. The variable wh (struct ieee80211_frame) points to the frame information of the skb’s packet.

4. The function checks if the version of the packet is version 0. If not, then it faces it as an error.

5. Then, it keeps in the variables dir(ection), type and subtype the corresponding information of the frame wh.
6. Then, it checks if all the VAPs of the node have scanning status. This check happens via the ic=vap->iv_ic. If the check is false, then the function continues from the point 13. If it is true then the function does the follow...
7. If the vap is station, then the sender of the packet is the associated AP and the address of this AP is the BSSID of the receiver. Finally, the variable bssid keeps the address 2 of the frame. Then, the function compares the BSSID of the source node and the BSSID of this node (receiver) and checks if these two nodes belong to the same BSS. If not, then the function discards the packet.
8. If the vap is in ad-hoc mode, then the BSSID naturally is the address 3. However, there is a case when the packet has direction different from No_DS or its type is control. In these cases the BSSID is the address 1. Next, if packet’s type is data and the sender is not known (ni==vap->bss is a BSS, not a station), then the function tries to find it. It calls the function ieee80211_find_node(ni->ni_table, wh->addr2), which searches the nodes which are associated to the BSS ni, to find which of them has the address of the sender. If it doesn’t succeed then it tries again with the function ieee80211_fakeup_adhoc_node. If it doesn’t succeed again then it fails.
9. If the vap is AP, then the filling of the variable bssid is the same with the previous case. However, in this case the common is that dir == To_DS ≠ No_DS and bssid = wh->addr1. Also, if bssid is different from the vap’s BSSID or the device’s multicast address, then the function discards the packet.
10. If the vap is related with a WDS link, then the function does similar checks. bssid takes the address 1 of the frame. Finally, it checks if the sender is different from the vap->wds_mac and in this case it discards the message.
11. The function informs the sender node’s variable (rssi and rstamp) by passing the related arguments. Also, it informs the field which keeps the time of the last reception (ni_last_rx). jiffies is a variable which keeps the time of the kernel space.
12. Then the function checks if the packet has nonzero seq value and in this case it computes the kind of service (priority) and the corresponding tid and finally it informs appropriately the variable ni->ni_rxseqs[tid].
13. Then the function checks the type of the message...

a. If it is a DATA packet, then it computes the headers length by calling...

hdrspace = ieee80211_hdrspace(ic, wh)
Then it decides if it will continue or skip the message or produce an error, considering the vap’s mode and a lot of details...
It checks if there is protection and in this case it calls the ieee80211_crypto_decap to remove the key. Then, if the transmission wasn’t multicast, the function checks if the message is a part of an initial fragmented message, and if yes, it reunions them (via the call ieee80211_defrag(ni, skb, hdrspace)) and continues only for the sk_buff instance that consists of the whole initial message.
Then, the function calls the ieee80211_decap(vap, skb, hdrspace). This calling removes the ieee80211_frame and replaces it with the appropriate Ethernet header.
eh = (struct ether_header *) skb->data is the variable that points to the new header of the skb.

The function checks if the packet is accepted considering the policy for this vap.

It informs the statistics of the vap, ni and ic.

Finally, it calls ieee80211_deliver_data(ni, skb) that delivers the packet to the upper layer and secondly it returns the type DATA.

b. If it is a MANAGEMENT packet, then it does similar work with a lot of detailed checks and finally it calls the function
ic->ic_recv_mgmt(ni, skb, subtype, rssi, rstamp)

Then, it will return MANAGEMENT
c. If it is a CONTROL packet, the same with one detail more. Finally, it returns CONTROL.

Page 2
17/7/2007

