 What is sk_buff ?---a basic kernel defined structure we are using for packet
 Author: Jian Lin Nov/14/2007
Structure sk_buff keeps all the necessary information about a package, from this structure we have access to the information of a packet, including pointers about the packet and variables that describe the packet. (Whenever there is a pointer that is called skb, it should point to an instance of this structure). This document is meant to briefly discuss the members in sk_buff and some functions operating on skb.
(1) Let’s view what’s in structure sk_buff ?
struct sk_buff {

/* These two members must be first. */

struct sk_buff *next; // Next buffer in list
struct sk_buff *prev; // Previous buffer in list
struct sk_buff_head *list; // List we are on
// this 3 pointers put sk_buff into a bi-direction cycle link.

struct sock *sk; // Socket the pkt is owned by
struct timeval stamp; // Time the pkt arrived
struct net_device *dev; // the network device which received the pkt
struct net_device *input_dev;

struct net_device *real_dev;

union {

struct tcphdr *th;

struct udphdr *uh;

struct icmphdr *icmph;

struct igmphdr *igmph;

struct iphdr *ipiph;

struct ipv6hdr *ipv6h;

unsigned char *raw;

} h;

union {

struct iphdr *iph;

struct ipv6hdr *ipv6h;

struct arphdr *arph;

unsigned char *raw;

} nh;

union {

struct ethhdr *ethernet;

unsigned char *raw;

} mac;
// the above 3 unions are the header structures of transport layer, network layer, and link layer

struct dst_entry *dst;

struct sec_path *sp;
char cb[40];
//This is the control buffer. It is free to use for every
// layer. Please put your private variables there. If you
// want to keep them across layers you have to do a skb_clone() first
unsigned int len, //Length of actual data (including header and data)
data_len,

mac_len,

csum; // Checksum
unsigned char local_df,

cloned, // may have cloned sk_buff but with only one original
pkt_type, //Packet class
ip_summed; // Driver fed us an IP checksum
__u32 priority; //Packet queueing priority
unsigned short protocol, // link layer protocol
security;

void (*destructor)(struct sk_buff *skb);

#ifdef CONFIG_NETFILTER

unsigned long nfmark;

__u32 nfcache;

struct nf_ct_info *nfct;

#ifdef CONFIG_NETFILTER_DEBUG

unsigned int nf_debug;

#endif

#ifdef CONFIG_BRIDGE_NETFILTER

struct nf_bridge_info *nf_bridge;

#endif

#endif /* CONFIG_NETFILTER */

#if defined(CONFIG_HIPPI)

union {

__u32 ifield;

} private;

#endif

#ifdef CONFIG_NET_SCHED

__u32 tc_index; /* traffic control index */

#ifdef CONFIG_NET_CLS_ACT

__u32 tc_verd; /* traffic control verdict */

__u32 tc_classid; /*traffic control classid */

#endif

#endif

unsigned int truesize; // storage region length, large than the length of pkt
atomic_t users;

unsigned char *head,*data,*tail,*end; // important pointers to storage region of pkt
};
The relationship between sk_buff and pkt and be illustrated as follows:

[image: image1.png]sk _buff

(The shaded field is packet.)

Note that it’s not necessary for a pkt to fill up all the space in storage region. So head point to the beginning of storage region, end points to the end of storage region, data points to where the pkt begins, and tail points to where pkt ends. The order of storage is as: header of link layer, header of network layer, header of transport layer, actual data. In a particular protocol layer, the data points to the header of this layer. Also note that the memory allocated for sk_buff and the packet are not continuous.
(2) functions about sk_buff that we might need to know
struct sk_buff*alloc_skb(unsigned int size, int gfp_mask)

allocate the memory of size size for pkt and its sk_buff. Size should be 16 bytes alignment. gfp_mask is the priority for memory allocation. After successful allocation, data and tail in sk_buff both point to the beginning of storage region. And len is 0, isclone and cloned variable are 0.
struct sk_buff*skb_clone(struct sk_buff*skb, int gfp_mask)

clone a new sk_buff from the original sk_buff, both of them point to the pkt. After sucessful clone, is_clone and cloned are set to 1. And the reference counter number will be increased.

struct sk_buff*skb_copy(struct sk_buff*skb, int gfp_mask)

Copy skb and the content which it points to. The new skb is independent of the older skb and the storge region. So is_clone, clone is set to 0, and new storage region’s reference number is 1.
void kfree_skb(struct sk_buff*skb)

release skb and the memory which it points to.
unsigned char *skb_put(struct sk_buff *skb, unsigned int len)

Move tail down by size len, and increase len in skb. This operation enlarges memory for pkt, but tail should be larger than end.
unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
Move data up by size len, and increase len in skb. This operation enlarges memory for pkt, but data should be less than head.

unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
Move data down by size len, and decrease len in skb. By this operation, data can point to the header of next layer.

void skb_reserve(struct sk_buff *skb, unsigned int len)
data and tail move down simultaneously by size len.

void skb_trim(struct sk_buff *skb, unsigned int len)
Truncate the length of pkt to len, discard the portion of data which is outside of len.

int skb_cloned(struct sk_buff *skb)
To decided whether it is a cloned skb or not.

(3) sk_buff_head concept
Sk_buff_head is the head of a bi-diresction link , for linking sk_buff. Please refer to the figure below.
[image: image2.png]

