Novel Metrics and Experimentation Insights for Dynamic Frequency Selection in WLANs

Stratos Keranidis

Giannis Kazdaridis, Stratos Keranidis, Adamantios Fiamegkos, Thanasis Korakis, Iordanis Koutsopoulos, Leandros Tassiulas

> University of Thessaly, Greece CERTH, Greece

Centre for Research and Technology Hellas

Introduction

The tremendous growth of 802.11 WLANs.

Outline

DFS in 802.11 WLANS

- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

DFS in 802.11 WLANS

- In IEEE 802.11 WLANs, channel selection is performed at the access point (AP).
- Common approach:
 - > Configuration through manual input upon network initialization.
- State-of-the-art approaches:
 - Select the channel that offers the lowest received signal strength (RSSI), during the scanning process.
 - Avoid highly congested frequencies, based on traffic measurements.
- Static channel assignments <-> Dynamic nature of wireless medium.

Our Contribution

- Dynamically switch the operating channel, taking into account several factors that affect end-user performance:
 - Overlapping channels interference
 - Contention
 - Co-channel interference

Contributions:

- Novel Client-assisted interference estimation
- Adaptability to varying traffic conditions through calculation of Channel Occupancy Time (COT)
- First complete driver level implementation
- Extensive experiments in both RF-isolated as well as in interference-rich environments

Outline

DFS in 802.11 WLANS

- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

Overlapping Channels Interference

➤ The popular 2.4 GHz band, used by 802.11b and 802.11g standards offers 11 consecutive channels spaced 5 MHz apart and occupying 22 MHz of bandwidth.

> In our work, we use the notion of **I**factor to model the degree of overlapping between transmissions on two certain frequencies.

Channel Separation $(m - n)$	0	1	2	3	4	5	6
Measured I_{factor}	1	0.75	0.37	0.1	0.02	0	0

$$RSS_j(m) = RSS_j(n) * I(m, n)$$

Contention and Co-channel Interference

Hidden Terminal problem in IEEE 802.11 infrastructure networks:

Motivating Experiment

Investigate impact of interference on throughput by varying:

- Transmission Power Channel Separation
- Traffic Activity Channel Separation

Throughput - Transmission Power of AP1

Throughput - Traffic Rate of AP1

Outline

DFS in 802.11 WLANS

- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

Performance Metrics (1/2)

- First requirement: Adjacent BSSs are assigned different channels.
 - RSS metric

>

$$\sum_{j \in \mathcal{B}} RSS_j(n) * I(m, n)$$

Second requirement: Estimate the level of congestion a node experiences on each channel.

COT metric
$$COT(m) = \sum_{k=1}^{F_m} \frac{L_k}{R_k}$$

To model the effect of channel congestion, we use COT as:

$$\sum_{j \in \mathcal{B}} RSS_j(n) * I(m, n) * COT(m)$$

Performance Metrics (2/2)

- Our algorithm supports feedback from both associated STAs, as well as from STAs that belong to other adjacent BSSs.
- We use A to denote the set of nodes that provide feedback, by transmitting measurement frames.
- The AP calculates the average metric value, over the total number of nodes providing measurements and selects channel m, such that the following quantity is minimized:

$$\frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} \sum_{j \in \mathcal{B}} RSS_{ij}(n) * I(m, n) * COT(m)$$

Client Feedback Mechanism(1/3)

Client Feedback Mechanism(2/3)

Client Feedback Mechanism(3/3)

Outline

- ➢ DFS in 802.11 WLANS
- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

Protocol Description (1/2)

STEP 1: Periodic calculation of COT by APs and piggybacking in Beacon and Probe-Response frames.

Beacon - Probe Response frame format

[8]	[2]	[tlv]	[2]	[3]	[tlv]
Timestamp	Beacon interval	 Country code	COT metric	Power constraint	 AtherosXR parameters

- STEP 2: Periodic repetition of BGscan by both STAs and APs, to gather information about interfering BSSs.
- STEP 3: Broadcasting of measurements by the STAs.

Measurement Report frame format

			calculated metric per channel										
[24]	[3]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
ieee80211_header	"dfs"	sequence number	ch 1	ch 2	ch 3	ch 4	ch 5	ch 6	ch 7	ch 8	ch 9	ch 10	ch 11

Protocol Description (2/2)

- **STEP 4:** Collection of measurements by the APs.
- STEP 5: Calculation of average metric values per channel at the AP by considering:
 - > 1) AP BGscan measurements
 - 2) measurements of associated STAs
 - > 3) measurements of neighboring STAs of other BSSs.
- STEP 6: Selection of the channel that offers the lowest calculated value.
- STEP 7: Broadcasting of CSA frame to advertise channel switching, in the case that the selected channel is different from the one currently in use.
- STEP 8: Switching to the new channel after a specific interval, defined in the CSA frame.

Outline

- ➢ DFS in 802.11 WLANS
- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

Experimental Configuration

NITOS testbed constists of 40 wireless nodes

ARBIT

Indoor testbed consists of 6 laptops

First set of Experiments (1/6)

(a) Throughput - Discrete Experiments.

		NODE3,4		
	NODE1,2		NODE5,6	1
1				1
1				1
1		AP1		N
1		((p))		1
	STA1,2	A	STA5	
		0		
1				NODE7 8
	10	STAS	3,4	10021,01
NODE9	,10			1
1				1
			-	

Different Versions	Selected Channel	Throughput (Mbps)
Unmodified Madwifi	2	0.843
AP (+overlapping)	7	13.96
+ 5 associated STAs	10	13.71
+ 10 neighboring STAs	8	17.14
+ 2 interfering APs	4	13.83

First set of Experiments (2/6)

(a) Throughput - Discrete Experiments.

	NODE3	,4	~
NODE1	,2	NODE5	,6
1 0			1 .
/			ì
1	Δ	D1	Y.
{			N N
STA1,	2 (())	ST	A5
	\Box		
1			
		1	NODE7,8
NODER 10		STA3,4	1
NODES, 10			1
1			and the second s
			1

Different Versions	Selected Channel	Throughput (Mbps)
Unmodified Madwifi	2	0.843
AP (+overlapping)	7	13.96
+ 5 associated STAs	10	13.71
+ 10 neighboring STAs	8	17.14
+ 2 interfering APs	4	13.83

First set of Experiments (3/6)

(a) Throughput - Discrete Experiments.

Different Versions	Selected Channel	Throughput (Mbps)
Unmodified Madwifi	2	0.843
AP (+overlapping)	7	13.96
+ 5 associated STAs	10	13.71
+ 10 neighboring STAs	8	17.14
+ 2 interfering APs	4	13.83

First set of Experiments (4/6)

(a) Throughput - Discrete Experiments.

Different Versions	Selected Channel	Throughput (Mbps)
Unmodified Madwifi	2	0.843
AP (+overlapping)	7	13.96
+ 5 associated STAs	10	13.71
+ 10 neighboring STAs	8	17.14
+ 2 interfering APs	4	13.83

First set of Experiments (5/6)

(a) Throughput - Discrete Experiments.

Different Versions	Selected Channel	Throughput (Mbps)
Unmodified Madwifi	2	0.843
AP (+overlapping)	7	13.96
+ 5 associated STAs	10	13.71
+ 10 neighboring STAs	8	17.14
+ 2 interfering APs	4	13.83

First set of Experiments (6/6)

University of Thessaly

Second set of Experiments

Third set of Experiments

University of Thessaly

Outline

- ➢ DFS in 802.11 WLANS
- Interference Model
- Performance Metrics
- Protocol Description
- Experimental Evaluation
- Insights and Future work

Insights and Future Work

Experimental Insights:

- Transmissions received with RSS lower than 10 points in the RSSI scale do not affect throughput.
- Interference exists even for nodes operating on channels separated by more than 6 channels.
- Certain topology and TXpower configurations lead the Capture Effect to affect throughput either positively or negatively.

Future Work:

- Extend the mechanism to detect STAs as well.
- Assign weights to STAs to improve estimation quality.
- Take our own measurements about I-factor.
- Incorporate the RSS threshold in our mechanism.
- Further investigate the impact of Capture Effect.

Thank You!

