
Testbed Innovations for Experimenting with Wired

and Wireless Software Defined Networks

Kostas Choumas1, Nikos Makris1, Thanasis Korakis2, Leandros Tassiulas3, Max Ott4

1 University of Thessaly and CERTH, Greece
2 Polytechnic Institute of New York University, United States

3 Yale University, United States
4 NICTA, Australia

e-mail: kohoumas, nimakris@uth.gr, korakis@poly.edu, leandros.tassiulas@yale.edu, Max.Ott@nicta.com.au

Abstract—Widely available and remotely accessible testbeds
have been used for a direct comparison of innovative protocols
and ideas with existing technologies. Therefore, multiple testbeds
have been established, aiming at providing experimentation
services with both wireless and wired networks. In this context,
several frameworks have been developed that enable easy experi-
mentation with the heterogeneous resources that the testbeds pro-
vide. However, most of these testbeds aim only in wireless/wired
networking experimentation, resulting in unsimilar testbed con-
trol and experimentation tools. Several attempts have been made
towards bridging this gap in order to allow experimentation
with heterogeneous wired and wireless resources. In this article,
we present our contributions in extending the state-of-the-art
control and management framework for wireless testbeds with
support for Software Defined Networking resources. As a proof
of concept, we demonstrate two use cases that take advantage of
our extensions using novel architectures and present our findings.

I. INTRODUCTION

Software Defined Networking (SDN) is an approach in

networking that decouples the process of taking forwarding

decisions (control plane) from the underlying system that

forwards the traffic (data plane). Over the last years, several

theoretical underpinnings on SDN have been established, thus

inspiring the conception and deployment of many novel net-

work architectures. Most of these architectures feature individ-

ual but unified backbone and access network segments, where

the former ones rely on high performance wired connections

and the latter ones exploit the benefits of the wireless medium.

The wired connections provide high reliability and avail-

ability, while the wireless ones leverage on easily deployed

access networks. Subsequently, numerous initiatives [1], [2],

[3] have emerged which fund projects aiming at bridging

wireless and wired networking and building enhanced end-to-

end systems with the use of SDN technologies. These projects

are abstractly divided in two classes. The first class focuses

on theory-driven protocol and architecture design, which is

expected to boost the flexibility as well as the utilization of

the existing network infrastructures, while the second class

targets at the implementation and evaluation of each proposed

design under real experimentation platforms.

The experimental platforms provided by these initiatives

are essential for the research community, since consensus is

growing that a complete and detailed theoretical study of a

network problem has to be followed by an applied extensive

validation of the corresponding results. As a consequence,

research in joint wired and wireless SDN requires testing

platforms equipped with the appropriate resources that en-

able realistic and large-scale experimentation. For instance,

the OpenLab [1] and FIBRE [2] projects developed and

enhanced heterogeneous testbeds, such as NITOS (wireless

networking), PlanetLab-Europe (wired networking), w-iLab.t

(wireless networking), i2Cat (SDN) and University of Bristol

(SDN and Optical networking) islands. Similarly, the Smart-

FIRE [4] project aims in building a unified SDN enabled

testbed between Europe and South Korea. These testbeds

enable experimentation on both wireless and wired network

topologies by making use of virtual or physical OpenFlow [5]

switches. OpenFlow is a protocol able to separate the control

and forwarding plane of the switches, being the most widely

known SDN enabler.

Another key issue in the consistent operation of these

testbeds is their efficient and flexible management. A frame-

work that enables the control and management of their re-

sources, as well as the description and execution of exper-

iments with use of these resources, is very essential. The

experimentation on both OpenLab and FIBRE environments is

based on the state-of-the-art cOntrol and Management Frame-

work (OMF) [6], enabling user-friendly scripting and con-

duction of experiments. OMF is a widely adopted framework

by the Future Internet Research and Experimentation (FIRE)

[3] community in Europe and the Global Experimentation in

Network Innovation (GENI) [7] in the United States. It is open

source and integrates all the necessary functionalities about the

life-cycle of experimentation on testbeds. The founders and

main developers of OMF initially focused on the administra-

tion of wireless resources and then moved to a more generic

approach where wired links among wireless nodes are also

handled.

This article outlines our development efforts in extending

OMF to support SDN capabilities. Our goal is to illustrate the

feasibility of experimentation in SDN using wireless and wired

network topologies, by providing platforms where various

scenarios can be tested. The open source nature of the adopted

framework enables further extension and modification of the

developed contributions. To sum up, in the following Section

II we illustrate the former status in testbed experimentation

before our contributions. In Section III, we present the SDN

capabilities supported by integrating our extensions in the

newest version of the experimentation framework. Implemen-

tation of use cases that take advantage of these capabilities is

covered in Section IV.We conclude in Section V.

II. STATUS IN TESTBED EXPERIMENTATION

Large scale experimentation has been enabled through the

establishment of several testbed islands over the past years.

They feature multiple heterogeneous resources, remotely avail-

able and widely utilized, leveraging on cutting-edge network-

ing equipment. However, the efficient operation of a testbed

is strongly related to the availability of an easily accessible

interface that enables sufficient provisioning and management

of its resources. The existence of such an interface is one of the

most attractive testbed features for their users, especially when

this interface enables the one-click execution of experiments

described in an easy-learned and human-readable language.

cOntrol and Management Framework (OMF), is fulfilling suc-

cessfully these prerequisites, thus boosting its wide adoption

by several testbed operators worldwide. Several other smaller-

scale frameworks exist, applied only in wireless/wired testbeds

exclusively.

OFELIA Control Framework (OCF) [8] is a widely used

tool enabling experimentation exclusively on top of OpenFlow

compatible wired networks. Nevertheless, OCF does not sup-

port the control of wireless devices that might be present in one

single testbed site. Similar to OCF, ProtoGENI [7] is another

widely used control framework that focuses on the cluster

experimentation, operating virtual machines that are hosted

on powerful servers. Nonetheless, it lacks the flexibility of

adapting in heterogeneous testbed environments, since its abil-

ity to control multiple kinds of resources is rather limited. In

the same context, multiple research projects make remarkable

efforts in solving multiple open issues on testbed provisioning,

experimentation and federation. However, their use from only

a limited number of testbeds does not guarantee their off-the-

shelf adoption and smooth operation. An example of this case

is the NEPI [3] framework. As far as NEPI is concerned, it

leverages on the standardized interfaces of OMF, and provides

the experimenter an alternative python based interface for

handling the testbed resources. Other frameworks target only

in providing a federated resource discovery, reservation and

provisioning (like TEFIS, FEDERICA, Teagle [3] etc.) and

no experiment control. Table I provides an overview of a

comparison between the aforementioned frameworks.

OMF is a generic framework; stemming from the wire-

less world, its open source and easily extensible nature has

been a vehicle for its wide adoption among many testbed

operators, regardless of the type of resources they provision.

OMF is written in a the Ruby scripting language, with a

plethora of libraries available for network specific operations.

Its architecture is modular (as illustrated in Figure 1(a))

TABLE I
COMPARISON OF THE FRAMEWORKS.

Testbed Experimentation control Federated Resource

Frameworks Wireless support Wired support Provisioning

OMF [6] yes yes yes

OCF [8] no yes yes

ProtoGENI [7] limited yes yes

NEPI [3] yes yes no

Teagle [3] no no yes

TEFIS no no yes

FEDERICA no no yes

consisting of different components endowed with the operation

of the experiment orchestration and the resource control.

Using a simple human readable experiment definition, OMF

is supporting the whole experiment lifecycle, cooperating also

with its accompanying framework, OMF Measurement Library

(OML). The experimenter submits a simple script to the OMF

Experiment Controller (EC) and the underlying functionality

is responsible for setting up the resources, running the defined

applications and collecting the results in an organized way. We

can easily conclude that due to its flexibility and mild learning

curve, OMF has boosted real world experimentation in testbed

facilities.

The newest version of OMF, named OMF6, is even more

extensible enabling the enhancement of its core functionality

supported by the Broker [9] and the adaptation to various

testbed specifications. More specifically, OMF6 defines a stan-

dardized protocol that may be used for controlling resources of

any type, such as computers or sensors, networking equipment

or any other SDN component. This protocol uses a standard-

ized sequence of messages sent by the EC to the Resource

Controllers (RCs) and vice versa. The RC is a daemon that

behaves as a proxy between the EC and the resource, translat-

ing the messages of the EC to executable commands for the

resource and vice versa. Testbed operators are able to use this

flexible protocol to extend the experimenter’s control on new

testbed resources or even establish federations of testbeds, thus

enhancing the experimentation ecosystem. In the following

section we present our work, based on the OMF6 framework,

that facilitates wireless and wired SDN experiments in a real

testbed environment.

III. BRIDGING WIRELESS AND WIRED SDN

EXPERIMENTATION

The research community that carries out the majority of

the SDN based efforts has been mainly focusing on the

wired However, wireless connections are improved in terms of

throughput efficiency and reliability, while they still offer low-

cost connectivity for end-devices. The analysis and evaluation

of the performance of various end-to-end scenarios, that usu-

ally involve a wireless access network and a wired backbone

infrastructure, is one of the most attractive research fields [10].

Towards satisfying this growing demand for experimentation,

testbed operators have been extending their platforms appro-

priately, with either SDN-capable, wired or wireless resources.

In this context, we choose to adopt the state-of-the-art

OMF6 testbed framework and extend it for handling the

Broker

O
M

L

E
x
p

/m
e

n
t
C

o
n

tr
o

lle
r

(E
C

)

Experiment

Description

User Results

Router RC

Switch RC

Node RC Cellphone RC

Base Station RC

Resource Controllers (RC)

(a) OMF6 Architecture.

Node 1 Node 2 Node 3 Node 4

control

messages

requests

Nodes 1 & 2

requests

Node 3 & 4

Broker

OpenFlow

Controller 1

User 1 User 2

OpenFlow

Controller 2

 X
Slice 1

FlowVisor

OpenFlow switch

Slice 2

(b) Integration of FlowVisor with OMF6.

Extended

RCs

with Open

vSwitch

Clients

 defGroup(‘AP’, Node1) { |n|

 n.net.wlan0.mode = “ap”
 n.addApplication(“of-controller”)
 }

 defGroup(‘Clients’, Node2, …) { |n|

 n.net.wlan0.mode = “managed”
 n.addApplication(“iperf”)
 }

 group(‘AP’).create_ovs(

 switch-name,

 Controller-Ipaddress,

 [wlan0])

 group(‘AP’).startApplications

 group(‘Clients’).startApplications

Experiment Description

Start OpenFlow

Controller and

traffic generators

Create

AP

Create

Clients

Create virtual

OpenFlow

switch

FRCP

messages

ECUser

Node 2

Node 3 Node N

AP

Node 1

(c) Integration of Open-vSwitch with OMF6.

Extended

RCs

with Click
 defGroup(‘Mesh’, Node1, …) { |n|

 n.net.wlan0.mode = “adhoc”
 }

 group(‘Mesh’).create_click(

 router-name,

 conf-file,

 [conf-arguments],

 wlan0)

Experiment Description

Create

Mesh

nodes

Create

Click

routers

FRCP

messages

OML

Node 3

Node 1

Node N

Node 2

ECUser

(d) Integration of Click Modular Router with OMF6.

Fig. 1. Architecture of the described extensions

respective SDN components. In the following subsections

we present our extensions to integrate the FlowVisor, Open-

vSwitch and Click Modular Router functionalities in the OMF6

platform.

A. Testbed OpenFlow slicing

As the demand for testbed experimentation increases, the

efficient utilization of the testbed resources is one of the main

goals for each testbed operator. Slicing is assisting towards

this goal, especially for large-scale facilities with subsets of

resources that lie idle otherwise. OMF6 satisfies these demands

out-of-the-box, taking advantage of its slicing capabilities. The

provisioning of isolated experimental slices is facilitated by the

component named Broker. Our developed slicing service for

OpenFlow switches is offered complementary to the traditional

slicing scheme imposed by OMF6. Slicing on such a switch

is usually performed using the FlowVisor [11] framework

(Figure 1(b)). FlowVisor behaves as a network hypervisor,

which enables the concurrent usage of an OpenFlow switch

by multiple experimenters.

In particular, each OpenFlow switch uses a predefined

protocol in order to communicate with a remote server. This

server is called OpenFlow controller and is endowed with

the process of communicating software defined flows to the

switch, regarding the switching decisions that it shall take upon

arrival of an unknown network frame. FlowVisor is nothing

more than a special purpose OpenFlow controller, which acts

as a transparent proxy between any OpenFlow switch and

multiple experimentation specific OpenFlow controllers. From

the perspective of the OpenFlow switch, FlowVisor is its

controller. It isolates parts of the underlying hardware switch

and provides access to these subparts to experimentation

specific controllers. Slicing might depend on several attributes

of the switch, like for example the number of ports used,

the physical switch memory or processing power utilized

per controller instance. The slicing may also be based on

the packet flow characteristics, like the IP/MAC source and

destination addresses or the VLAN tagging.

We extended the Broker entity to control the FlowVisor

process and allocate completely isolated OpenFlow switch

slices upon a user’s request. The slices are isolated based on

the switch’s physical ports, thus preventing each experimenter

to interact with the traffic intended for another slice. When a

user reserves testbed nodes attached to a physical switch, the

Broker transparently creates an OpenFlow slice, consisting of

the ports where the reserved nodes are attached. As it is illus-

trated in Figure 1(b), with the existing Broker functionality,

each user reserves two nodes that share a wireless connection

using an idle or non interfering with other users’ wireless

frequency. Our extensions take place at the wired OpenFlow

enabled backbone connection of the nodes, and upon the

node reservation set up the appropriate FlowVisor instance

which abstracts the testbed switch that the two depicted nodes

connect to.

B. Virtual OpenFlow switches

The creation of virtual OpenFlow switches relies on the

Open-vSwitch [12] tool, which is used in multiple commercial

products and runs in many large scale production networks.

Open-vSwitch is a software tool for creating SDN based

networks, using computers instead of dedicated network de-

vices. An example of the wide Open-vSwitch adoption is the

PlanetLab-Europe testbed, which upgraded its functionality by

supporting OpenFlow capabilities, thus enhancing the testbed’s

initial usage and upgrading it to one of the largest scale

SDN experimentation facilities. With the use of this software,

experimenters are able to create an overlay OpenFlow network

between the PlanetLab-Europe nodes, that now play the role

of virtual OpenFlow switches.

Although Open-vSwitch has been initially developed for

managing wired networks by creating network bridges, it can

be efficiently used for managing wireless interfaces that are

parts of a bridge. If such an interface is placed in an Open-

vSwitch bridge, the experimenter has the ability to intercept

the traffic that is exchanged over the wireless interface as

Ethernet based frames (since the wireless header is removed

upon each packet reception by the wireless driver). Although

this seems to be a time saving advantage for the researcher,

it also poses many questions regarding the controllability of

the SDN enabled wireless switch. To this aim, we enable an

SNMP agent process on the wireless nodes, which allows us to

remotely configure the wireless interfaces in a software defined

manner.

Based on these processes for creating wireless OpenFlow

switches, we developed the corresponding extensions to the

OMF6 framework that allow this functionality. We signif-

icantly extended the Node RCs, which are in charge of

receiving the proper configuration messages and applying the

corresponding settings to the underlying physical machines

(nodes) of the testbed. All the existing commands of the

Open-vSwitch API are supported by our extended RC. Com-

plementary to this, we developed the appropriate exchange

messages among the OMF6 entities for instructing the RC to

send the appropriate snmp-set commands for configuring the

wireless interfaces, and the snmp-get commands for retrieving

their status. Accordingly, the EC entity, which is in charge

of sending the appropriate messages to the RC based in

the experiment description submitted by the user, has been

extended to support this functionality.

The messages exchanged are based on the Federated Re-

source Control Protocol (FRCP) standardized by the OMF6

research community. With our extensions, the experimenter

can now use the testbed framework to transparently create and

configure virtual switches, combining even wireless resources,

in large scale using a user friendly and human readable

experiment description. An example of such a set up is the

configuration of an Open-vSwitch instance consisting of the

wireless interface of a node, the execution of an OpenFlow

contoller to control this switch, and multiple wireless clients

to connect and generate traffic accordingly on the wireless net-

work in a single experiment definition. Figure 1(c) illustrates

the ease of experimentation on this scenario using OMF6.

The aforementioned OMF6 extensions have been devel-

oped and evaluated using virtual switches combining several

heterogeneous wireless technologies that are available at the

NITOS testbed. Namely, our extensions support the concurrent

operation and configuration of Atheros and Intel based WiFi

interfaces, Intel and Teltonika WiMAX interfaces and Huawei

LTE interfaces in a single OpenFlow wireless switch.

C. Software Defined Routers

Click (Modular Router) [13] is another long established

software tool that its capabilities can be exploited for SDN

development. More specifically, Click enables the development

of software defined routers with use of Linux operated phys-

ical machines. In Roofnet [14], Click developers investigated

wireless connectivity issues and proposed a routing algo-

rithm named after it. Their framework is extensible and well

documented, enabling the implementation of many routing

algorithms with significantly low effort. The alternative option

for packet forwarding in a wireless mesh is the 802.11s

protocol, that relies on a similar approach called path selection.

Nonetheless, Click is much more flexible and extensible than

the existing 802.11s implementations.

Our extensions to support the Click framework have not

been so straightforward as for the other two frameworks. Click

is a highly configurable tool with many users being able to

develop their own extensions of the supported functionality,

using the so-called elements. As it is illustrated in Figure 1(d),

we follow a different approach in order to support as many

as possible configurations. The Node RC is only responsible

for executing the Click router in the user-space level with the

appropriate arguments. The experimenter submits to the EC

a configuration file that describes the desired Click settings.

With this approach, the experimenters can now define new

elements, which did not exist at the time that our developments

took place, and use them to orchestrate their experimentation

in large scale mesh networks. We have moved one step beyond

in the extension of our framework and enabled OML support in

the core Click system, responsible for capturing the output of

Click execution and injecting the measurements in a database.

Using our provided hooks in the Click version 2.0.1, the

experimenter can easily support new measurements from the

latest released elements.

IV. EXPERIMENTAL SCENARIOS WITH USE OF WIRELESS

AND WIRED SDN

In this section we present some experimental results that

clearly illustrate the potential of the experimentation in joint

wireless and wired SDN. We illustrate the significance of our

contributions by running realistic use cases over our enhanced

platforms. In particular, we present two separate scenarios,

where we try to cope with various research challenges that

require deep investigation and experimentation for defining the

best approaches.

A. Building content-based private networks in geographically

expanded areas

The objective of this scenario is the implementation of large-

scale network infrastructures that combine a wireless access

network and a wired backbone. The extended use of Virtual

Private Networks (VPNs), able to define broadcast-domains

with expanded coverage area all over the world, is a strong

motivation for improving their capabilities. Their efficiency is

boosted significantly when they rely on schemes that balance

the traffic load among multiple traffic flows. Experimenting

over such these facilities seems to be very attractive in sce-

narios involving multiple geographically distributed users who

request common contents. In such cases, directing the users’

requests to a set of content servers, rather than overloading

a single end-point, is the optimal solution. The capacity and

performance of these networks can be significantly improved,

when alleviating the traditional addressing schemes and impos-

ing a content-based approach. A content-based approach with

load balancing capabilities can be efficiently implemented by

using SDN techniques, like the OpenFlow technology.

An enhanced large-scale network which supports multi-

ple opportunistic end-point connections and load balancing

capabilities, should be based on wireless access-points that

are interconnected with a set of content servers through an

“intelligent” wired backbone. In [10], authors blend SDN-

capable wireless and wired resources in a single pan-European

topology. The experimentation on this scheme is based on

OMF6, utilizing the Open-vSwitch and SNMP related add-ons.

In [10], a VPN is used among wireless access-points/stations,

geographically distributed content servers and virtual/physical

OpenFlow switches. More specifically, the functionality of the

broadcast domain imposed by the VPN is modified, by altering

the operation of the Address Resolution Protocol (ARP) and

implementing load balancing schemes. The modified broadcast

domain connects multiple European-wide sites provided by

the OpenLab platform, including multiple content servers

from PlanetLab-Europe (PLE1, PLE2 and PLE3) and several

wireless nodes from NITOS (including smartphones and the

NITOS machine), as it is depicted in Figure 2(a).

OpenFlow is used in order to mangle the traditional ARP

process and establish the appropriate load balancing schemes.

The authors provide their solution as an Information Centric

approach, backwards compatible and directly applicable to

traditional IP-based networks, where the IP address is not

used as a unique identifier of each host but is characterizing a

specific content. In this sense, a single host like for example

a video streaming server, would feature several IP-addresses,

one for each content that it provides. Since the interconnected

networks are IP-compatible, the traditional procedure when

searching for a host is performed; the requesting client issues

an ARP request message and awaits for the ARP reply with the

destination MAC address. Subsequently, an ARP request will

trigger multiple ARP replies in the same broadcast domain.

The intermediate OpenFlow equipment, with the respective

OpenFlow controller, intercepts these replies and according to

the load balancing scheme imposed, forwards the respective

ARP reply. Each load balancing scheme that maps appro-

priately a set of requesting clients to a group of identical

servers, sharing among them the aggregate traffic from these

clients, deals with a variety of architectural challenges. The

investigated architecture assumes that the content identifier is a

URL, as the Content Delivery Networks do, and leave the end-

points to be untouched operating as usually. The modifications

apply on the underlying OpenFlow network, which intercepts

the ARP messaging process in order to implement a variety

of load balancing policies.

Thus, the adopted topology is involving two wireless virtual

OpenFlow switches, with multiple wireless clients requesting

a content from servers deployed in several sites in Europe.

Physical wired OpenFlow switches are also employed at the

different sites. The experimental topology and the content

requesting applications are automatically deployed by using

our aforementioned extensions in OMF6. The OpenFlow

switches (virtual and hardware) are instructed to apply three

different load-balancing policies. One policy, named Client-

based policy, forwards each client to a specific server, that is

chosen when the client first joins the network (Figure 2(c)).

The Load-based policy periodically redirects some clients

trying to unload the most congested servers (Figure 2(d)),

while the Proximity-based policy just forwards the ARP reply

from the most approximate server to the client (Figure 2(e)).

In Figure 2(b) we present our findings for these three policies.

As we can see, the Proximity-based policy allocates all the

requests to one server, and thus the maximum throughput is

received at one end point (NITOS server). On the other hand,

the Load-based and Client-based policies manage to distribute

the requests among the different servers (NITOS, PLE1, PLE2,

PLE3).

B. Enhancing the wireless access network with cooperative

diversity provided by mesh networks

The focus of this scenario is the enhancement of the access

network architecture. Normally, using the standardized proto-

col stacks that are employed in commercial devices, wireless

networks with infrastructure (access-points) do not allow the

cooperation among the stations. On the other hand, a wireless

mesh architecture implies that there are no access-points and

stations but peers and gateways, enabling the cooperation

NITOS

PlanetLab-

Europe

InternetPLE1

PLE3

PLE2

NITOS

(a) The experiment topology.

NITOS PLE1 PLE2 PLE3
0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Client

Load

Prox/ty

(b) Throughput performance of the three load balancing policies.

NITOS

PlanetLab-

Europe

Internet

(c) Server Request mapping for the Client-based
policy

NITOS

PlanetLab-

Europe

Internet

(d) Server Request mapping for the Load-based
policy

NITOS

PlanetLab-

Europe

Internet

(e) Server Request mapping for the Proximity-
based policy

Fig. 2. European-wide private network (VPN) based on Open-vSwitch. Each color is mapping a server-client pair.

among the peers. The wireless mesh is an emerging architec-

ture that is standardized (802.11s, Roofnet) and enables better

performance in wireless networks when the users are crowded

or mobile. The efficiency of a wireless mesh depends on the

utilized routing protocol.

Shortest path routing is a conceptually simple and widely

used approach, since there are several routing protocols that

implement it. These protocols aim at achieving minimum end-

to-end delay and maximum throughput performance, assuming

that the network is not congested. However, the case of

network congestion is a frequent phenomenon which should

be seriously considered and appropriately handled. This is the

motivation behind multi-path routing research, where alterna-

tive paths to the destination are utilized in order to provide

resistant and seamless communication. Theory driven research

on this area has concluded in a scheme, named Back-Pressure

[16], which achieves throughput optimality under some prereq-

uisites. In particular, Back-Pressure operates on a time-slotted

and centralized schedule, introducing a specific scheduling

and routing policy. Additionally, there is an improved version,

named Enhanced Back-Pressure, that can be configured to

move packets in the direction of their shortest paths, improving

the delay performance. However, both schemes have not been

implemented and used in realistic networks, mainly because of

the impracticable centralized scheduling policy and the time-

slotted assumption.

Multiple research efforts focus on designing wireless and

distributed routing algorithms, that implement as many as pos-

sible of the Enhanced Back-Pressure aspects and are applied

in real-life wireless mesh networks. One of these works is

presented in [15], where the authors propose a scheme that

incorporates most of the Enhanced Back-Pressure (EBoW)

aspects in a WiFi compliant fashion. In particular, they in-

troduce a scheme in which every node attempts to forward

packets to less loaded and closer to the destination neighbors.

The proposed scheme is using multiple paths to forward the

wireless traffic, thus superseding other state-of-the-art multi-

path routing algorithms (Horizon and CDP [15]), as well

as the well known shortest-path SRCR algorithm [14]. The

experimentation on these protocols performance is based on

the OMF6 framework and its enhancements for Click Modular

Router support. OMF6 controls the nodes and enforces them to

behave as Back-Pressure routers, using the Click software tool.

Figure 3(a) illustrates the experimentation topology shaped on

the NITOS platform with use of OMF6.

The integration of Click with OMF6 enables the configu-

ration of this scheme in a large scale topology, similar to the

access network of a realistic topology such as this of Figure

red

server

blue

smartphone

red

smartphone

blue

server

(a) An enhanced wireless access network with cooperative di-
versity. EBoW [15] uses efficiently both paths for the forwarding
of the traffic generated by the blue smartphone and forwarded
to the blue server.

red

server

blue

smartphone

red

smartphone

blue

server

(b) SRCR [14] uses only the shortest path to forward the traffic
generated by the blue smartphone, which passes through the
overloaded red smartphone.

EBoW Horizon CDP SRCR
0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(c) Throughput performance of the four under investigation
routing algorithms.

Fig. 3. Wireless mesh network based on Click Modular Router. The wireless links indicate which paths are used for the traffic forwarding.

2(a), which the authors employed to evaluate their scheme.

The evaluation of the proposed EBoW scheme, as well as

its comparison with the other state-of-the-art wireless routing

algorithms, is presented in Figure 3(c). The clear advantage of

the EBoW scheme can be seen in terms of throughput network

performance.

V. CONCLUSION

In this article, we describe the implementation of our SDN-

specific extensions in the state-of-the-art control and manage-

ment framework for wireless testbeds. We discuss the necessity

and feasibility for experimentation using joint wireless and

wired SDN, and the problems in testbed administration that we

overcome using our contributions. Through the development

and evaluation of realistic large scale scenarios with the use

of the enhanced framework, we show the significant benefits

of our developments. Our ongoing work includes further SDN

extensions for the OMF6 framework, as well as the evaluation

of more use cases and scenarios, in a large scale federated

environment.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union’s Seventh Framework Programme

under grant agreement N◦
611165, named SmartFIRE.

REFERENCES

[1] OpenLab: The OpenLab federation of various European testbeds, http:
//www.ict-openlab.eu.

[2] FIBRE: Future Internet testbeds experimentation between Brazil and
Europe, http://www.fibre-ict.eu.

[3] Fed4FIRE: Federation of European facilities for FIRE, http://www.
fed4fire.eu.

[4] SmartFIRE: Enabling SDN Experimentation in Wireless Testbeds ex-
ploiting Future Internet Infrastructures in South Korea and Europe,
http://eukorea-fire.eu.

[5] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM,
2008.

[6] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. OMF: a control and management framework for networking
testbeds. ACM SIGOPS, 2010.

[7] GENI: Exploring Network of the Future, http://www.geni.net.

[8] Expedient: A Pluggable Platform for GENI Control Frameworks, http:
//yuba.stanford.edu/∼jnaous/expedient.

[9] Donatos Stavropoulos, Aris Dadoukis, Thierry Rakotoarivelo, Maximil-
ian Ott, Thanasis Korakis and Leandros Tassiulas. Design, Architecture
and Implementation of a Resource Discovery, Reservation and Provi-
sioning Framework for Testbeds. WiNMeE, 2015.

[10] Kostas Choumas, Nikos Makris, Thanasis Korakis, Leandros Tassiulas
and Maximilian Ott. Exploiting Openflow Resources towards a CCLAN.
IEEE EWSDN, 2013.

[11] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, Nick McKeown, and Guru Parulkar. Can the production network
be the testbed? USENIX OSDI, 2010.

[12] OvS: Open virtual Switch, http://openvswitch.org.
[13] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The click modular router. ACM Trans. Comput. Syst., 2000.
[14] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Archi-

tecture and Evaluation of an Unplanned 802.11b Mesh Network. ACM

MobiCom, 2005.
[15] Kostas Choumas, Thanasis Korakis, Iordanis Koutsopoulos, and Lean-

dros Tassiulas. Implementation and End-to-end Throughput Evaluation
of an IEEE 802.11 Compliant Version of the Enhanced-Backpressure
Algorithm. EAI TRIDENTCOM, 2012.

[16] Michael J. Neely, Eytan Modiano, and C.E. Rohrs. Dynamic Power
Allocation and Routing for Time Varying Wireless Networks. IEEE

INFOCOM, 2003.

