

"Evolved User Equipment for Collaborative Wireless Backhauling in Next Generation Cellular Networks".

University of Thessaly, Electrical & Computer Engineering Dept.

The Centre for Research & Technology Hellas, CERTH

Outline

- 1) Motivation
- 2) Future Cellular Networks
- 3) Collaborative Wireless Backhauling Architecture
- 4) Contribution
- 5) LTE Mesh Network Topology
- 6) Use Cases Scenarios
- 7) LTE Mesh Network
- 8) Physical Layer Design
- 9) MAC Layer Design
- 10) Performance Evaluation

Motivation

- ▶ Road to 5G
 - Improved Capacity
 - Extended Coverage
 - Energy Efficiency
- Currently...
 - Mobile Data Offloading
 - Cellular WiFi interworking
 - Interference Coordination Techniques
 - Coordinated Multipoint Transmission
 - Small Cells
 - Device to Device

Future Cellular Networks

- Exploit UEs as active network elements
- Collaborative Communication
- Are users willing to convey traffic for the network?
 - Monetary incentives
 - Beneficiary data plans
 - Reduction on the subscription costs
- Evolve UEs to extend physical point-to-point links between eNBs
- Propose a new paradigm for link virtualization and new virtual airinterface
- Enable cooperative packet forwarding at L2/MAC

Collaborative Wireless Backhauling Architecture

Contribution

Dual Benefit

- Operators benefit from exploiting eUEs
 - improve network coverage
 - low-latency communication performance through MAC-packet level forwarding
- Users benefit from their participation (at an expense on their battery consumption)
 - bargain for beneficiary data plans
 - improve their throughput performance

Use cases

- moving cell scenarios
 - eUEs act voluntarily as relays and packet forwarders
- small/densified scenarios
 - ▶ eNBs provide multiple data pipes to eUEs through different radio bearers

Novelty

- dual CoMP is realized in uplink
 - eUEs form a virtual MIMO for transmitting to the eNB
 - eUEs voluntarily and independently contribute to the communication over the virtual-air interface
- MAC scheduler
 - > to handle collaborative transmissions
 - Low latency communication

LTE Mesh Network Topology

- eNBs: legacy 3GPP base stations
 - Meshing
 - Coordination of user traffic
 - Management and scheduling of radio resources
 - Routing for intra and inter-cell communication
- Ues: legacy 3GPP user equipment
- eUEs: evolved UEs
 - Able to associate and connect with multiple eNBs
 - Interpret scheduling messages coming from eNBs on signaling channels to further enable traffic routing and packet forwarding

Use Cases

Scenarios

Enable wireless backhauling to core-isolated eNBs

- eUEs convey voluntarily traffic between eNBs
- eUEs are evolved into on-demand intermediate data forwarders
- and form a virtual MIMO antenna
- eUEs are enabled as a service by the eNBs to relay traffic
- and offer low latency communication

Moving Cells

- Public Safety and Private Mobile Radio
- Intelligent Transport Systems (ITS) applications

Small Cells

eUEs help home-eNBs to re-establish X2-interface

LTE Mesh Network

Virtual Overlay – Enable Mesh Networking

Signal-level Cooperation

- ▶ Bit error probability is minimized with respect to QoS constraints
- > Presents an abstraction to higher layers: a Virtual Link with given probability of packet erasure
- ▶ Implicates all eUEs (either in RX or TX) regardless of their perceived link quality with eNBs
- Alamouti coding allows for independent coordination among UEs and over-the-air signal combination towards the destination eNB

Packet-level Cooperation

- MAC performs scheduling and packet forwarding
- ▶ MAC identifies the Physical links to be activated → minimize the frame error rate
- ▶ DL → collaborative broadcast, UL→ dual CoMP
- Low latency communication as identified packets belonging on collaborative transmission are being forwarded to the destination eNB without the need of traversing the eUEs' whole protocol stack

Network-level Cooperation

- ▶ Local traffic routing and relay selection (over a virtual link) → network or higher layers
- ▶ Packet forwarding → MAC

Physical Layer Design

Cell Search

- Standard LTE synchronization procedures to detect PSS and SSS
- Non-Primary eNBs are allowed to re-initiate 3GPP RRC connection reconfiguration procedures

Synchronization

- Donor eNBs provide a time reference synchronization to the core-isolated eNBs
 - Over-the-air decentralized network synchronization
 - Utilize a common synchronization channel
 - No coordination is required, scalable

Coding

- OFDMA, single frequency
- eUEs and UEs share the same resources
- ▶ DL (eNB-to-eUEs) → Decode and Forward (BROADCAST)
- ► UL(eUEs-to-eNB) → distributed Alamouti (VIRTUAL MIMO- dual COMP)
- Destination eNB performs framing allocation to the collaborative eUEs by sending a scheduling grant request with info related to the PDUs sequence number, size and HARQ id
- ▶ Having correctly decoded the requested PDU during broadcast, each eUE performs Alamouti coding independently
 - Autonomous antenna element
- ▶ Robust to the number of collborting eUEs: → at least one eUE is required to have correctly decoded the PDU during the broadcast phase

MAC Layer Design (1/3)

Queuing:

- Packet storage using buffers maintained at the MAC layer
- Sophisticating indexing of packets inside the buffers based on their sequence number and their size to support multiple TBS formats.

Reporting:

MAC buffer status report (BSR) is sent periodically from eUEs to dest eNB to update storage info.

Aggregation:

It is used to concatenate the MAC PDUs and bundle them when this is instructed by the eNB (multiple TBS)

Forwarding:

- It identifies whether an incoming PDU is related to a certain virtual link in which the eUE participates.
- If so, it stores the incoming PDU in the respective eUE's buffer for the specific VL at the MAC

Collaborative Scheduling:

- It schedules transmission for the outgoing PDU on the corresponding virtual link
- Schedulin is instructed by the destination eNB on the intermediate eUEs

Collaborative Protocol Stack

MAC layer Design (2/3)

eUE Cell Association and Initialization

- As a legacy UE performing "attach" to its serving eNB (primary eNB)
- Access to core is provided by S-GW and P-GW functionalities
- A second "attach" is triggered on the eNBs that is allowed to connect (information taken from primary eNB)
- eNBs initiate virtual data radio bearer interfaces and trigger the buffer initiation on the corresponding PDU buffer queues on the eUEs

Virtual Link Setup

- Virtual Link := Collaborative Radio Bearer (CO-RB)
 - Hides the transportation info to the higher layers as it can be composed of several point-to-point physical links
- Collaborative RNTI → differentiates a regular from a collaborative transmission and helps to identify packets on the collaborative Virtual Link
- Part of the MAC header
- Two CO-RNTIs (an ingress and engress) can be used for setting up a Virtual Link

MAC layer Design (3/3)

Virtual Link H-ARQ

- To reduce latency,
- eUEs correctly send a BSR to the destination eNB as soon they decode a MAC PDU.
- If the destination eNB decides to schedule the MAC PDU on the egress CO-RNTI, the scheduling information will be received by all the eUEs, even to those not having correctly decoded the MAC PDU yet.
- ▶ Then, all the eUEs create a (virtual) HARQ process associated to the sequence number (SN) of the MAC PDU, which is contained in the scheduling information.

Adaptive Modulation and Coding

- In LTE standard, UEs are not permitted to deliberately decide about packet transmission and the related configurations. That is instructed by the eNBs.
- Two-hop topology: Common or different MCS for the transmission over the two physical links

eNB MAC co-scheduler

- Schedules collaborative packet transmission for the eUEs participating on the VL in the uplink phase
- It schedules PDU transmission from the eUEs that have replied with a positive BSR

Collaborative Transmission Flow

Performance Evaluation

- OpenAirInterface (OAI)
 - ▶ Open-source software for 4th generation mobile cellular networks
 - ▶ Fully compliant with the 3GPP standards
 - Implementation code with built-in capabilities for transition between real experimentation and repeatable and scalable emulation
- Experimentation
 - ▶ Topology: 2 eNBs and 4 eUEs in a 500m², 5Mhz bandwidth and maximum data rate on collaborative link is 12 Mbps
 - Low Latency L2/MAC packet forwarding
 - eUE benefits and improves its performance by exploiting multiple eNB communication

Parameter	Value	Parameter	Value
Carrier Freq.	1.9 GHz	Traffic Type	UDP
Bandwidth	5MHz	Traffic Type Fading	AWGN Ch.
Frame Duration	10ms	Pathloss	-50 dB
TTI	1 ms	Pathloss Exp.	2.67
UEs	1, 2, 3, 4	Mobility	Random

TO STATE OF THE ST

Efficient L2/MAC forwarding for low latency communication

- in a coarse communication environment 1st and 2nd hop = 0.18 BLER
- ▶ Low latency up to 16.94% improvement
- Received Throughput improves up to 68.49 %
- ▶ PLER reduces up to 59.25%
- ▶ 3GPP defines QCIs 1 & 4 for GBR bearers for VoIP and Video streaming to 100ms and 300ms respectively
 - Obtained results are <</p>

An eUE experiences communication service from two-eNBs concurrently

Packet Loss Rate

- eUE improves its throughput performance (up to ~65 %)
 - when it receives a dual eNB connectivity comparing to a sole eNB association
- UDP constant bit rate traffic of 2.1 KB/s is transmitted by both eNBs to the same eUE for different BLER probabilities
- As BLER increases the PLR increase and that affects throughput rate perfromance.

Thank you

- **EURECOM**
 - OpenAirInterface
 - http://www.openairinterface.org/
 - Code Available at SVN repository:
 - https://svn.eurecom.fr/openairsvn/openair4G/branches/lolamesh
- University of Thessaly and CERTH
 - ▶ NITLAB Network Implementation Testbed Laboratory
 - http://nitlab.inf.uth.gr