
Controller Placement for Minimum Control Traffic
in OpenDaylight Clustering

Marios Karatisoglou, Kostas Choumas and Thanasis Korakis
Dept. of ECE, University of Thessaly, Volos, Greece

Email: karatiso, kohoumas, korakis@uth.gr

Abstract— Software-defined networking (SDN) decouples the
control and data planes and moves the control logic to the
SDN controllers. The controllers are servers handling the
switches and directing their traffic with the use of open
and non-proprietary protocols. Consequently, the controller is
crucial for the network performance. OpenDaylight (ODL) is a
widely recognised controller platform implementing a clustering
mechanism, where multiple controllers are synchronized to
behave as a single one, while also enabling load balancing
and failure resilience. The purpose of this paper is to extract
the communication patterns between the ODL controllers in a
cluster, as well as between the controllers and the switches,
in order to place the cluster controllers appropriately in a
network. Our testbed experimentation reveals the bandwidth
requirements of the control traffic in an ODL cluster, while a
network model is introduced for the problem of determining
the optimal controller placement for minimum control traffic.

I. INTRODUCTION

Software-defined networking (SDN) has brought about
radical changes in the way networks are designed. Some of
the most important features that have been affected are the
control and data plane. The control plane (how the network
traffic is handled) and the data plane (how the traffic is
forwarded according to the decisions made by the control
plane) used to be embedded inside the networking devices
(routers and switches), reducing the overall flexibility of the
networking infrastructure. With a software-defined network
architecture, the control plane is now separated from the
data plane. Thus, a software control program, named SDN
controller, can now control the functionality of many data-
plane elements [1], named SDN switches. Still, a network
with a single controller comes with several weaknesses,
such as reliability and scalability, since the control plane
is centralized. To address this issue, ODL [2] community
has implemented a clustering mechanism, in which multiple
controllers operate, achieving high availability and fault
tolerance.

Running multiple controllers introduces new problems,
due to the aim of operating as a single controller with a
centralized logic. When different controllers are operating
together, the overall state of the cluster is distributed among
them. The state of each individual controller should not differ
from the rest of the cluster controllers. Thus, a mechanism
to synchronize the functionality of the cluster controllers
is essential. ODL implements various techniques and al-
gorithms to address these problems, which generate extra
control traffic. The focus of this research is the controller
placement [3] in the network aiming at minimizing the

bandwidth required for the total control traffic, including
both the controller-to-controller and the controller-to-switch
traffic.

The minimization of the bandwidth required for the control
traffic is the highest priority objective in networks with
low capacity control plane, such as low speed wireless
networks with in-band control [4]. Moreover, the less the
control traffic, the less the extra energy consumed for non-
data transmissions, which is very important for limited-
energy sensor networks. Finally, the minimization of the
time delays between the controllers and the switches is not
essential in cases where the SDN control is proactive. For all
these reasons, the minimum control traffic is very important
e.g. in IoT networks exploited by massive machine-type
communications (mMTC) in 5G. The application of SDN in
these networks, especially regarding the controller placement
models [5], is an open issue with a lot of ongoing research.

The paper is divided in the following sections. Section
II presents work related to SDN controllers and controller
clustering. Section III focuses on the ODL clustering mech-
anism. It describes how the data is distributed between the
controllers. Section IV presents the network model, as it is
derived by the description of the ODL clustering mechanism.
Afterwards, Section V includes the results from monitoring
the communication between the cluster nodes, along with the
experimentation environment setup and tools that have been
used during our research. Section VI concludes the paper
and presents implications for future work.

II. RELATED WORK

There are various studies that have been conducted to in-
vestigate the performance and scalability of SDN controllers.
The research in [6] focuses on the comparison between
three well-known controllers, called ONOS, Floodlight and
POX, based on the way they communicate with the switches.
However, this work does not cover the performance of those
controllers as a part of a cluster. In [7], failover time, failback
time and QoS issues in ODL clustering are addressed. Still,
there is lack of research on how the ODL cluster scales,
while switches are being connected to the network and flow
rules are being installed. The impact of controller placement
in clustering performance is also left unexamined.

The focus of this study is the controller placement prob-
lem, that was first introduced in [3]. In [8], a new dimen-
sion in this problem is introduced, since the controller-to-
controller traffic is also considered, besides the controller-



to-switch one. The optimization criterion is related to the
reaction time perceived at the switches, that is dependent
on the communication delays. In [9], a joint study of both
types of control traffic overhead is presented, which are
considered as two of the four costs that are included in the
objective’s weighted sum to be minimized. In [10], Pareto-
optimal placements are derived aiming to solve a multi-
objective optimization, where one of the objectives is the
minimization of the control traffic. In [11], the objective
of minimizing the overhead of software defined measure-
ments is considered, assuming however fixed controller-to-
controller costs. In [12], an approximation algorithm with a
guaranteed performance bound is derived for a model similar
to the one we consider in this paper, however the proof
requires that the per-unit-load cost for the traffic between
any two controllers is a constant, which is usually not the
case in practice.

In [4], a theoretical and experimental study has been
conducted, regarding the bandwidth usage of the control
traffic in a cluster of Kandoo controllers [13]. Our paper
can be seen as an extention of the results in [4] for the
ODL controller, which is generally more widely used than
Kandoo. To the best of our knowledge, this is the first study
of ODL controller placement focusing exclusively on the
minimization of the total required bandwidth for the control
traffic. Furhtermore, this work is one of the few works that
present experimentation results in a realistic environment
offered by an SDN testbed.

III. OPENDAYLIGHT CLUSTERING OVERVIEW

A. Akka Cluster

ODL clustering uses the fault-tolerant and peer-to-peer
membership service of Akka cluster [14], which relies on
a gossip protocol and an automatic failure detector. Every
time a node starts with the intention to join an Akka cluster,
it initiates a 4-way-handshake defined by the gossip protocol.
It communicates with the seed nodes (preconfigured points
of contact for new nodes) by sending InitJoin messages. The
seed node confirms the InitJoin request by replying with a
InitJoinAck message. The node now sends a Join message
and it has successfully joined the cluster when it receives
a Welcome message back from the seed node. The gossip
protocol is not only responsible for replicating the current
state of the cluster to all its nodes, but also it is crucial for the
cluster’s persistency. Heartbeat messages are sent among the
cluster nodes periodically and expect a HeartbeatRsp back
within a timeout to consider a node valid.

B. Distributed Datastore

ODL’s distributed datastore is based on Akka and seg-
mented in three shards (or chunks), called inventory, topology
and toaster. Inventory shard contains the flow rules of the
switches controlled by the cluster, while topology shard
holds data about the network topology. Inventory or topology
shard’s size is increasing when extra flows or switches

Fig. 1. Shard distribution and replication between the cluster nodes. The
initial shards are replicated from member 1 to members 2 and 3.

Fig. 2. At first, Follower 1 sends to the Leader its new data. Then, Leader
replicates the new data to the rest of the followers. Notice that there is no
direct replication between the followers.

are added respectively. Toaster shard defines the Remote
Procedure Calls (RPC) that can be executed in each shard,
along with the actions that should be taken upon each call.

Each shard is firstly assigned to a specific cluster node,
which is not necessarily the same for all shards. Then, it
is distributed across the cluster by being replicated to all
other nodes, in order to avoid data loss when a node failure
is encountered. All shard replicas in the cluster are always
synchronized for achieving consistency. For this reason, ODL
implements the Raft consensus algorithm [15], which aims at
achieving consensus in a distributed system. Figure 1 shows
the shard and replica distribution.

C. Raft Consensus Algorithm

For each shard, the Raft algorithm provides one of the
three states, namely leader, candidate or follower, to each
cluster node. Raft starts by initiating an election among the
cluster nodes. The node which gets the most RequestVote
messages becomes the shard leader. By default, ODL uses
one node as the leader of all shards, usually the one that starts
first, as it is demonstrated in [16]. The leader is responsible
for discovering inconsistencies among the cluster nodes
related to the shard and replicating the proper data by sending
AppendEntries messages. Moreover, empty AppendEntries
messages are periodically initiated by Raft, having the role
of heartbeat messages. The leader must respond with a
HeartbeatRsp message within a timeout, otherwise followers
should change their state to candidate and a new election
round begins.

In case that a follower has new information, e.g. a new
switch connected to it, it sends a CreateTransaction message
to the leader to notify about the new data. After the transac-
tion is done, the leader forwards the new data to the other
followers to keep them updated. The role of leader is very



crucial, since all shard updates are forwarded to it, and it
is the leader’s responsibility to replicate them to the rest of
the followers. Visualization of a transaction from a follower
to the leader and then the replication from the leader to all
followers is shown in Figure 2. The overall communication
of the cluster seems to be centralized towards the leader,
which is also validated by our experimentation results. In
what follows there will be a description of the process of
building a network model representing the total control traffic
produced in an ODL cluster.

IV. NETWORK MODEL

An undirected connected graph G = (S,L) is considered,
representing the control plane of an SDN network, where S
represents the set of SDN switches and L represents the set of
network links. Let S = |S| and L = |L| be the number of the
switches and the number of the links respectively. Without
loss of generality, it is assumed that the routing algorithm
used for the control traffic is the shortest path routing, the
path connecting the couple of switches s1, s2 ∈ S is p(s1, s2)
and the number of links included in this path is |p(s1, s2)|.
Finally, C ⊆ S is the subset of switches where C = |C|
controllers are placed and grouped in a cluster, while cl ∈ C
is the leader of this cluster. From now on, we may refer to c ∈
C as a controller or the switch hosting it, interchangeably. Let
cs ∈ C denote the controller that switch s ∈ S is assigned to.
Vector c = (cl ∈ C, (cs ∈ C : s ∈ S)) describes a controller
placement and switch assignment. The first vector’s value
indicates the leader controller. Each other vector’s coordinate
maps to a switch s ∈ S and the vector’s value indicates the
corresponding controller cs ∈ C.

The bandwidth usage for the controller-to-switch (Ctr-Sw)
traffic from all network links is noted as

BS ,
∑
s∈S

∑
l∈p(s,cs)

bs =
∑
s∈S

wsbs, (1)

where bs is the bandwidth required for the Ctr-Sw traf-
fic exchanged between switch s and controller cs, while
ws , |p(s, cs)| is the length of the path connecting s
to cs. Similarly, the bandwidth usage for the controller-to-
controller (Ctr-Ctr) traffic from all network links is noted
as

BC ,
∑

c∈C−{cl}

∑
l∈p(c,cl)

bc =
∑

c∈C−{cl}

wc
(
bcinv + bctopo

)
,

(2)

where bc is the bandwidth required for the Ctr-Ctr traffic
exchanged between controller c and leader cl, that is the
sum of the bcinv traffic produced for the inventory shard
and the bctopo traffic produced for the topology shard, while
wc , |p(c, cl)| is the length of the path connecting the two
controllers c and cl.

This work aims to formulate a mathematical problem
that gives as solution the optimal controller placement C∗,
the optimal controller leader c∗l and the optimal switch
assignment, given in the vector c∗ = (c∗l , (c

∗
s ∈ C∗ : s ∈ S)),

which minimizes the total bandwidth required for the control
traffic. This problem is expressed as

c∗ , argmin
c

(∑
s∈S

wsbs +
∑

c∈C−{cl}

wc
(
bcinv + bctopo

))
.

(3)

At this point, we make the following remarks that are val-
idated by our experimentation with ODL controllers. More
details about our experimentation results will be provided
later in Section V.

REMARK 1: The required bandwidth for the Ctr-Sw traffic
exchanged between a switch and its controller is proportional
to the number of flows existing in this switch.

Let βs denote the required bandwidth for each flow. If
fs is the number of flows existing in s ∈ S , then bs =
fsβs, ∀s ∈ S.

REMARK 2: The required bandwidth for the Ctr-Ctr traffic
exchanged between a follower and the leader controller, due
to the inventory shard, is proportional to the number of flows
existing to the switches assigned to the follower. It is also
proportional to the number of flows existing to the switches
assigned to all other controllers (including also the leader).

Let βint
inv denote the required bandwidth for the connection

between a controller and the leader, for each flow config-
ured by this controller, and βext

inv denote the corresponding
bandwidth, for each flow configured by all other controllers
(including the leader). If f c ,

∑
s∈S:cs=c f

s is the number
of flows existing at the switches assigned to controller c ∈ C
and F ,

∑
s∈S f

s is the number of all existing flows, then
bcinv = f cβint

inv + (F − f c)βext
inv, ∀c ∈ C.

REMARK 3: The required bandwidth for the Ctr-Ctr traffic
exchanged between a follower and the leader, due to the
topology shard, is proportional to the number of switches
assigned to the follower. It is also proportional to the number
of switches assigned to all other controllers (including the
leader).

Let βint
topo denote the required bandwidth for the connec-

tion between a controller and the leader, for each switch
assigned to this controller, and βext

topo denote the corresponding
bandwidth, for each switch assigned to all other controllers
(including the leader). If yc ,

∑
s∈S:cs=c 1 is the number

of switches assigned to controller c ∈ C, then bctopo =
ycβint

topo + (S − yc)βext
topo, ∀c ∈ C.

Based on these Remarks, the problem presented in Equa-
tion 3 changes to

c∗ = argmin
c

(∑
s∈S

wsfsβs+∑
c∈C

wc
(
f cβint

inv + (F − f c)βext
inv

)
+∑

c∈C
wc
(
ycβint

topo + (S − yc)βext
topo

))
⇒ (4)



c∗ = argmin
c

(∑
s∈S

wsfsβs +
∑
c∈C

wc
(
f cβc

inv + ycβc
topo

))
.

(5)

Problem 5 is equivalent to Problem 4, since the quantities
Fβext

inv and Sβext
topo are constants for a given network, βc

inv ,
βint

inv − βext
inv and βc

topo , βint
topo − βext

topo.
As we did in our previous work [4], we make the simpli-

fying assumption that all switches feature the same number
of flows f , thus f c = ycf and Problem 5 is equivalent to the
following Integer Quadratic Programming (IQP) problem

min
x,y,z

fβs
S∑

i,j=1

wijxij + (fβc
inv + βc

topo)

S∑
i,j=1

wijyirj (6)

s.t.
S∑

j=1

xij = 1, ∀i = 1, . . . , S,

S∑
i=1

xij = yj , ∀j = 1, . . . , S,

ri ≤ yi, ∀i = 1, . . . , S,
S∑

i=1

ri = 1,

xij , ri ∈ {0, 1}, yi ∈ N ∀i, j = 1, . . . , S.

(7)

This problem has S2 binary variables xij , S nonnegative
integer variables yi and S binary variables rj . Indexes i and
j take integer values from 1 to S, each value corresponding
to a switch s ∈ S. If xij = 1, then switch si has to
be assigned to controller cj (the controller collocated with
switch sj). Nonnegative integer yi is the number yci of
switches assigned to controller ci. Binary ri = 1 if and only
if the leader controller is placed at switch si. Finally, wij is
the length of the path connecting switch si (or controller ci)
and controller cj . The first and second sum terms of Equation
6 correspond to BS and BC respectively. The first term is
the sum of the lengths of the paths connecting all switches
to their controllers, multiplied by the bandwidth fβs. The
second term is the sum over all controller to leader pairs of
the products between the length of the path connecting them
and the number of switches assigned to the controller, scaled
by the bandwidth fβc

inv + βc
topo.

V. EXPERIMENTATION AND RESULTS

A. Experiment Setup

In order to test the performance of the communication
among the cluster’s nodes, we use the NITOS experimenta-
tion testbed [17]. A cluster of ODL controllers is used for
the control plane, as well as the Mininet emulator [18] for
extending the physical data plane of NITOS. Each controller
of the cluster is running on a separate physical node in the
testbed. A total of three controllers is used to set up the
ODL cluster, each of them using the OpenFlow protocol and
the features of L2 Switch project for the flow configuration.
Finally, we use iftop, a free software command-line system
monitor tool that produces a frequently updated list of

Fig. 3. #sw switches connected to either Leader (1st phase) or Follower 1
(2st phase), for measuring the Ctr-Ctr traffic of the topology shard.

TABLE I
TOPOLOGY SHARD TEST RESULTS: BANDWIDTH USAGE FOR VARIOUS

NUMBER OF SWITCHES AT EACH CONTROLLER

#sw bandwidth usage (Mbps)
cl cf1 cl → cf1 cf1 → cl cl ↔ cf1 avg1 cl → cf2 cf2 → cl cl ↔ cf2 avg2

0 0 0.09 0.09 0.18 – 0.09 0.09 0.19 –
1 0 0.34 0.11 0.44 0.26 0.34 0.10 0.44 0.25
2 0 0.53 0.11 0.64 0.23 0.53 0.11 0.64 0.23
3 0 0.73 0.11 0.84 0.22 0.72 0.11 0.83 0.21
5 0 1.04 0.12 1.16 0.20 1.05 0.11 1.16 0.20

10 0 1.65 0.12 1.77 0.16 1.65 0.12 1.77 0.16
20 0 3.21 0.14 3.35 0.16 3.21 0.14 3.35 0.16
50 0 7.89 0.18 8.07 0.16 7.91 0.19 8.10 0.16

100 0 15.70 0.32 16.02 0.16 15.70 0.34 16.04 0.16
0 1 0.51 1.09 1.60 1.42 0.33 0.10 0.43 0.25
0 2 0.84 2.09 2.93 1.37 0.45 0.11 0.56 0.19
0 3 1.15 3.08 4.23 1.35 0.66 0.12 0.78 0.20
0 5 1.83 5.08 6.91 1.35 0.97 0.14 1.10 0.18
0 10 3.45 10.05 13.50 1.33 1.81 0.17 1.98 0.17
0 20 6.24 19.60 25.84 1.28 3.46 0.22 3.68 0.16
0 50 14.40 48.50 62.90 1.25 7.78 0.41 8.19 0.16
0 100 28.50 97.12 125.62 1.25 15.70 0.73 16.43 0.16

network connections, to monitor the communication among
the cluster’s nodes.

B. Topology Shard Tests

As described in Section III, topology shard holds data
regarding the network topology. When a topology shard in
a cluster member updates its data, the new data is replicated
to the other members. For this purpose, we measure the
changes in the used bandwidth for the synchronization of all
topology shard replicas, when various numbers of switches
are connected to each controller. The experiment topology is
depicted in Figure 3.

Table I summarizes the results of these measurements.
The leftmost column of the table represents the number of
switches (#sw) connected to each controller, where cl and
cf1 stand for Leader and Follower 1 controllers respectively.
Follower 2 (cf2 ) never has any switches. The columns labeled
as c′ → c′′ give the bandwidth usage in Mbps of the traffic
sent from c′ to c′′, where c′ and c′′ are either cl, cf1 or cf2 ,
while columns cl ↔ c′ give the total bandwidth usage for
both cl → c′ and c′ → cl. Finally, columns avg1 and avg2
give the average increase per added switch of the bandwidth
usage, for both directions, for the communications between
cl ↔ cf1 and cl ↔ cf2 respectively. For example, when
2 and 3 switches are controlled by cl, the values in column
avg1 are 0.23 = (0.64−0.18)/2 and 0.22 = (0.84−0.18)/3
respectively.



For the first phase of our experimentation, in order to
explore how the data is replicated by Leader to the followers,
we increase the number of switches connected with Leader.
The results of this experimentation phase are depicted in
the upper half of Table I, including all rows having non-
zero values below cl. It was found that bandwidth usage has
been increasing in communication from the side of Leader
to the followers. No bandwidth increase was observed in the
communication from the followers to Leader. This occurs
because the followers do not hold any new data in their
topology shard that needs to be replicated. The average
bandwidth increase per added switch converges to 0.16
Mbps, either for the cl ↔ cf1 or cl ↔ cf2 communication,
which is the marked value in the middle of both avg1 and
avg2 columns.

For the second phase, the number of switches connected
to Follower 1 is increased. The relative results are grouped in
the bottom half of Table I, including all rows having non-zero
values below cf1 . In this case, Follower 1 communicates with
Leader to inform it about the new topology data that have
appeared in the network, and afterwards Leader proceeds
with the replication of the new data to the outdated topology
shards. Indeed, as we can see in Table I, there is a bandwidth
increase in the communication channel from Follower 1 to
Leader. Moreover, increase in bandwidth usage is present in
the communication from Leader to Follower 1 and Follower
2 (due to data being replicated). In this case, the average
bandwidth increase per added switch, as it is illustrated in
the avg1 and avg2 columns, is 1.25 Mbps and 0.16 Mbps
for the cl ↔ cf1 and cl ↔ cf2 communication channels
respectively.

Based on these results, it is safe to assume that Remark
3 is confirmed with βint

topo ' 1.25Mbps, βext
topo ' 0.16Mbps

and βc
topo ' 1.25 − 0.16 = 1.09Mbps. Finally, there are

no columns depicting the communication between the two
followers, since it has been constantly stable and negligible
in terms of bandwidth usage (almost 0.055 Mbps), compared
to the other communications. This is due to the shard
replication and how it is performed. When a replica shard of
a follower has new data, it communicates with the leader’s
initial shard and the second one is now responsible for the
replication to the other followers. This means that there is
no direct communication concerning the replication among
the followers. The only interaction among them mainly
regards periodic messages sent by the Akka, the gossip and
Raft protocol, such as heartbeat messages, which require
negligible bandwidth.

C. Inventory Shard Tests

In this series of experiments, the cluster behavior is
tested when new information appears in the inventory shard.
Inventory shard contains the flow rules that are installed to
the cluster. Three switches are kept, each one connected to
a single controller. Figure 4 depicts the topology of these
experiments. The flows are installed by using the ovs-ofctl

Fig. 4. #flows flows configured to the switch of either Leader (phase 1) or
Follower 1 (phase 2), for measuring the Ctr-Sw and Ctr-Ctr traffic of the
inventory shard.

TABLE II
INVENTORY SHARD TEST RESULTS: BANDWIDTH USAGE FOR VARIOUS

NUMBER OF FLOWS AT EACH SWITCH

#flows bandwidth usage (Mbps)
cl cf1 cl → cf1 cf1 → cl cl ↔ cf1 avg1 cl → cf2 cf2 → cl cl ↔ cf2 avg2

0 0 1.00 1.10 2.10 – 1.00 1.10 2.10 –
30 0 1.04 1.10 2.14 0.001 1.02 1.10 2.12 0.001
60 0 1.08 1.10 2.18 0.001 1.08 1.10 2.18 0.001

120 0 1.19 1.10 2.29 0.002 1.19 1.10 2.29 0.002
240 0 1.45 1.10 2.55 0.002 1.45 1.10 2.55 0.002

0 30 1.09 1.25 2.34 0.003 1.09 1.10 2.19 0.003
0 60 1.21 1.35 2.56 0.004 1.09 1.10 2.19 0.002
0 120 1.46 1.60 3.06 0.004 1.20 1.10 2.30 0.002
0 240 1.85 2.03 3.88 0.004 1.39 1.10 2.49 0.002

command line tool, which is generally used for monitoring
and administering OpenFlow switches.

At first, the number of flows installed in the switch
connected to Leader are increased. Similarly to the topology
shard case, when inserting new data in the leader inventory
shard, an increase in the bandwidth usage is noticed from the
leader’s side to the follower nodes, while the communication
from the followers’ side remains stable. The bandwidth
monitored during this experiment is demonstrated in Table II,
where the first column now is labelled as #flows and shows
the number of flows at the switch of each controller. The
avg1 and avg2 columns show the average bandwidth increase
per added flow at the switch controlled by cf1 and cf2
respectively. Both avg1 and avg2 converge to 0.002Mbps,
as we can see at the bottom marked values of the upper half
of this table.

For the second phase, flow rules are installed in the switch
connected to Follower 1. Once again, the major role of
Leader is obvious in the replication of the new data to the
followers. Table II makes it evident that there is an increase
in the bandwidth from Follower 1 to Leader, while Follower
1 is forwarding the new data to Leader. Leader immediately
replicates the new information to the followers, which results
in the increase of the bandwidth usage noted in columns
cl → cf1 and cl → cf2 . The bottom marked values of
the avg1 and avg2 columns converge to 0.004Mbps and
0.002Mbps respectively. As follows, Remark 2 is confirmed,
resulting in βint

inv ' 0.004Mbps, βext
inv ' 0.002Mbps and

βc
inv ' 0.004− 0.002 = 0.002Mbps.

D. Communication between Controller and Switch

In this series of experiments, we examine the Ctr-Sw
traffic. The results of these experiments are given in Table III,



TABLE III
CTR-SW TEST RESULTS: BANDWIDTH USAGE FOR VARIOUS NUMBER OF

FLOWS AT THE SWITCH.

#flows bandwidth usage (Kbps)
sw → ctr ctr → sw sw ↔ ctr avg

0 18.10 1.88 19.98 –
10 19.80 1.92 21.72 0.17
20 21.53 1.95 23.48 0.18
50 26.73 2.04 28.77 0.18

100 36.00 2.19 38.19 0.18
200 53.90 2.50 56.40 0.18

where columns sw→ ctr and ctr→ sw refer to the traffic sent
from the switch to the controller and the opposite. In this set
of experiments, the first phase of the previous experiments is
repeated, as it is depicted in Figure 4, increasing the number
of flows installed in the switch connected to Leader and
monitoring the sw → ctr and ctr → sw traffic. Obviously,
the average increase per added flow, as it is presented in the
avg column, is 0.18Kbps. Thus, Remark 1 is confirmed and
βs ' 0.18Kbps.

At this point, it is worth mentioning that βs is the traffic
produced for each flow entry because of the statistics kept
by the controller for this entry. This is the long term average
control traffic produced for each flow entry, that may be
much lower than the traffic peak produced when the flow
entry is configured in the switch. Moreover, the switches can
be connected to multiple controllers, belonging to the cluster,
increasing in this way their resilience to controller failures. In
this case, for each switch, one of the controllers suggested by
the solution of our problem is the master, while the rest ones
are called slaves. Our experimentation results show that the
control traffic exchanged between the switch and the slave
controllers is much lower, and negligible compared to the
other control traffic.

E. Control Traffic and Network Resilience

The network model of Section IV gives the controller
placement for minimum control traffic. The model param-
eters βs, βc

inv and βc
topo are given by the measurements that

were taken in the previous experiments. As we have already
shown in our previous work [4], Ctr-Sw traffic BS decreases
with the utilization of a distributed set of multiple controllers,
while Ctr-Ctr traffic BC decreases with the utilization of few
controllers. In contrast to our previous work, where only BS

increases with f , now both BS and BC increase with f , and
more specifically, BC is faster-growing because βc

inv > βs.
As follows, in contrast to our previous results for the Kandoo
controllers, where the optimal number of controllers depends
on f , now the minimum control traffic is always achieved
when one single controller is used. However, operating
a network with one controller implies zero resilience in
controller failures. A minimum of three ODL controllers is
required in order to create a fault-tolerant controller cluster,
or even more controllers for increased network resilience.

VI. CONCLUSIONS

In this paper, we discuss the effects of having an ODL
cluster set up in a network, instead of a single controller.
First of all, we review the concept behind the distribution of
the data among the cluster’s controllers.Secondly, a network

model is built that describes the total control traffic produced
in an ODL cluster, based on the experimentation results.
During the experiments, we measure the overhead that is
introduced to the network’s bandwidth usage due to the
intercommunication of the cluster controllers. We monitor
the changes in the bandwidth usage inside the cluster as a
result of installing new flows as well as connecting new
switches to the controllers. Concluding, the total control
traffic is minimum when few controllers are used, as few
as possible, given the network resilience requirement.

ACKNOWLEDGMENT

The research leading to these results has received funding
by the European Horizon 2020 Programme for research,
technological development and demonstration under Grant
Agreement Number 857201 (H2020 5G-VICTORI).

REFERENCES

[1] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to
SDN: An Intellectual History of Programmable Networks. SIGCOMM
Comput. Commun. Rev., 44(2):87–98, April 2014.

[2] J. Medved, R. Varga, A. Tkacik, and K. Gray. OpenDaylight:
Towards a Model-Driven SDN Controller architecture. In Proc. IEEE
WoWMoM, 2014.

[3] B. Heller, R. Sherwood, and N. McKeown. The Controller Placement
Problem. In Proc. HotSDN, 2012.

[4] P. Flegkas K. Choumas, D. Giatsios and T. Korakis. The SDN
Control Plane Challenge for Minimum Control traffic: Distributed or
Centralized? In Proc. CCNC, 2019.

[5] T. M. C. Nguyen, D. B. Hoang, and Z. Chaczko. Can SDN Tech-
nology Be Transported to Software-Defined WSN/IoT? In iThings-
GreenCom-CPSCom-SmartData, 2016.

[6] B. Yu, G. Yang, and C. Yoo. Comprehensive Prediction Models of
Control Traffic for SDN Controllers. In Proc. IEEE NetSoft, 2018.

[7] Andre Rizki Dewo Nugraha, Ridha Negara, and Danu Dwi San-
joyo. High Availability Performance on OpenDayLight SDN Con-
troller Platform (OSCP) Clustering and OpenDayLight with Heartbeat-
Distributed Replicated Block Device (DRBD). Journal Infotel, 10:149,
08 2018.

[8] T. Zhang, A. Bianco, and P. Giaccone. The role of inter-controller
traffic in SDN controllers placement. In Proc. IEEE Conference on
NFV and SDN (NFV-SDN), 2016.

[9] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba. Dynamic Controller Provisioning in
Software Defined Networks. In Proc. International Conference on
Network and Service Management (CNSM), 2013.

[10] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev,
and P. Tran-Gia. Specialized Heuristics for the Controller Placement
Problem in Large Scale SDN Networks. In Proc. International
Teletraffic Congress (ITC), 2015.

[11] Zhiyang Su and Mounir Hamdi. MDCP: Measurement-aware dis-
tributed controller placement for software defined networks. In Proc.
IEEE ICPADS, 2015.

[12] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas. SDN Controller
Placement at the Edge: Optimizing Delay and Overheads. In Proc.
IEEE INFOCOM, 2018.

[13] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications. In Proc. HotSDN,
2012.

[14] Akka Cluster. https://doc.akka.io/docs/akka/2.5/common/cluster.html.
[15] Diego Ongaro and John Ousterhout. In Search of an Understandable

Consensus Algorithm. In Proc. USENIX Annual Technical Conference,
2014.

[16] T. Kim, S. Choi, J. Myung, and C. Lim. Load balancing on distributed
datastore in opendaylight SDN controller cluster. In Proc. IEEE
NetSoft, 2017.

[17] Network Implementation Testbed using Open Source platforms (NI-
TOS). https://nitlab.inf.uth.gr/NITlab/nitos.

[18] Mininet: An Instant Virtual Network on your Laptop.
http://mininet.org.


