Design, Architecture and Implementation of a
Resource Discovery, Reservation and Provisioning
Framework for Testbeds

Donatos Stavropoulos*f, Aris Dadoukis*f, Thierry Rakotoarivelo,

Max Ott¥, Thanasis Korakis*T and Leandros Tassiulas®
*Department of Electrical and Computer Engineering University of Thessaly, Greece
fCentre for Research and Technology Hellas, CERTH, Greece
iNational ICT Australia (NICTA), Alexandria, Australia
§Department of Electrical Engineering, Yale University, New Haven, USA

Abstract—Experimental platforms (testbeds) play a significant
role in the evaluation of new and existing technologies. Their
popularity has been raised lately as more and more researchers
prefer experimentation over simulation as a way for acquiring
more accurate results. This imposes significant challenges in
testbed operators since an efficient mechanism is needed to man-
age the testbed’s resources and provision them according to the
users’ needs. In this paper we describe such a framework which
was implemented for the management of networking testbeds. We
present the design requirements and the implementation details,
along with the challenges we encountered during its operation in
the NITOS testbed. Significant results were extracted through
the experiences of the every day operation of the testbed’s
management.

I. INTRODUCTION

Research into the Future Internet has aroused a lot of interest
lately, inducing the proliferation of experimental facilities
which are also known as testbeds. Testbeds comprise pro-
grammable networking elements available to the experimenters
who want to evaluate their algorithms and protocols in real
world settings. Testbeds go a bit further from the constrained
laboratory environment to large scale experimentation provid-
ing topologies that span the globe.

In order to make large scale experimentation feasible,
reproducible and easy, several experimental tools have been
developed so that to standardize the way experimenters interact
with resources of the testbeds. The cOntrol and Management
Framework (OMF) [1] is considered the prevalent tool for
experimentation in networking testbeds, providing a modular
architecture capable of controlling heterogeneous resources.
The Network Experiment Programming Interface (NEPI) [2]
provides another alternative to the experimenters who can
leverage it, in order to orchestrate their large scale experi-
ments. Both tools use the Federated Resource Control Protocol
(FRCP) [3] in order to communicate with the underlying
resources. The objective of these tools is to provide a more
standard and flexible way in controlling testbed resources, in
contrast to the user’s custom scripts, which are usually tailor-
made according to a specific testbed where the experiment is
conducted.

Apart from the user tools that facilitate the experimentation
workflow from the experimenter’s perspective, there is also a
need to have equivalent tools for management and adminis-
tration of the experimental facilities. OMF in its latest release
(version 6) tackled the problem of controlling the experimen-
t/resources and in this paper we present how the management
of the facility is handled by the framework. More specifically,
we analyze the design principles and the overall architecture of
the implemented framework, which tries to tackle the complex
problem of testbed management. The ultimate objective is
to aid the administrators of experimental facilities in their
everyday tasks regarding facility management, as well as to
provide valuable insights for those who intend to build and
manage a testbed.

The rest of the paper is organized as follows: In Section
II the complex problem of testbed management is analyzed
and in Section III related work is given. Section IV provides
a thorough view in the design principles and the architecture
of the presented framework. Finally in Section V, the NITOS
case study is evaluated, while a conclusion of our work and
future extensions are given in Section VI.

II. PROBLEM STATEMENT

Managing a testbed can be a complex procedure, especially
when remote access is given 24/7 to experimenters around the
world, presuming that every procedure will be automated and
human intervention will be limited or none at all. Running a
testbed locally in a lab where the experimenter is physically
present, might not need any special management software for
discovering, reserving and provisioning the resources, since
everything is done manually on-site by the experimenter.
However, when the experimenter is not physically present,
his actions on the actual resources are limited, since having
another human serving this purpose is not efficient in many
ways, the only viable alternative is to offer these functionalities
as a service to the experimenter through software management
components.

The initial step for conducting an experiment is finding
the necessary resources on top of which the experiment will

be executed. During the “discovery” phase where the exper-
imenter tries to find resources that fulfill his requirements,
testbeds need to expose their list of resources with their
corresponding properties to the experimenter. Some may say
that having everything documented in a website can fulfill
this purpose but the truth is that a more versatile solution
is needed besides a static representation of the resources in
a website. The list of resources should depict their actual
availability and capabilities at the time the advertisement is
requested. The best practice is to offer the list of resources
through an inventory service to the experimenters and their
tools and at the same time provide the necessary hooks so
that other components could update the inventory through API
calls. The benefits of having an API for exposing the resources
of a testbed are multilateral, since it can be leveraged from
tools like a reservation component or a monitoring tool. For
instance, when a resource is reserved by an experimenter, the
inventory service automatically is updated by the reservation
component and informs any forthcoming experimenter about
the unavailability of this resource. Furthermore, removing a
resource from the list due to random failures or maintenance
can be done automatically, at the time a monitoring tool of
the testbed diagnoses a malfunction in one of the resources.

The heterogeneity of the resources that often constitute a
testbed imposes a significant problem for the management
and the administration of the facility. Complex resources
necessitate the analogous complex adaptations on the side
of the administrative tools. A critical component of every
testbed’s management framework is the inventory that keeps
the unique characteristics of each provided resource. This
component should allow extensibility and modularity in order
to be able to maintain information of newly added types of
resources. Additionally, a way to initialize and manage the
actual resource should be adequately defined with one or
more services. Therefore, the management framework should
not only be capable of describing new resources, but also
instantiating them as part of the provisioning phase.

Moreover, features like resource reservation and policy
enforcement, as proposed in [4], are of great interest to the
administrators of experimental facilities who seek ways to
better utilize their platforms through fine-grained policies [5].
A common problem for the administrators is the enforcement
of resource usage quotas based on the user role which might be
a student, an academic researcher or an industrial researcher.
Additionally, the participation of the testbeds in federations
introduces new challenges to the administrators who want to
apply different policies on users originated from other testbeds
of a federation.

Besides the capabilities provided for managing local testbed
components, further versatility is needed in terms of com-
munication interfaces and interoperability with external or
3rd party tools and even with other testbeds, which run
under a different administrative domain. The latter feature is
about federating with other testbeds, which is tackled by the
Slice-based Federation Architecture (SFA) [6] protocol that is
widely used in order to achieve this objective. Federations

between testbeds fit the need for global scale experiments
involving different types of resources. However, they add an
extra burden to the administrators of the experimental facilities
who want to federate with other testbeds, since they need to
develop the necessary adaptation layers over or within their
management software.

III. RELATED WORK

In the context of Future Internet research facilities, a diverse
number of resource types (wired and wireless networking,
software defined networks, cloud infrastructure, etc) is pro-
vided to the research community, by various facilities around
the world. Each one of them requires a way for managing
its infrastructure and a way to seamlessly federate with other
testbeds. To this end, various software components have been
developed for the management purposes of testbeds.

Generic SFA wrapper (SFAWrap) [7] is a framework that
creates an SFA interface, by consuming services that are
built and used by a testbed for resource interaction and
manipulation. In order for a testbed to utilize the SFAWrap
framework, an implementation of a set of web services is
required. If the testbed has already those services, it is possible
to implement a driver that translates them into the supported
format. In addition if the testbed has any kind of special
resources, the SFAWrap’s parser can be extended so that it
can decode/encode those resources. SFAWrap is not a full
management framework and best be used when a testbed
already has a working management framework that is not SFA
compatible.

FIRMA [8] is proposing an extensible architecture for
testbed federation that relies on a semantic Linked Data
driven information model. An initial Java framework has been
implemented, mostly for evaluation purposes. An essential
characteristic is their focus on standardizing the exchanged
resource descriptions by leveraging semantic web technolo-
gies.

The ORCA [9] control framework is actually an umbrella
project that consists of several software components that
evolve together with the ORCA architecture. The ORCA
framework manages programmatically controllable shared ele-
ments, which may include servers, storage, networks, or other
components that constitute a Cloud computing infrastructure.

FOAM [10] is an Aggregate Manager (AM) that is part
of the GENI project [11] and supports GENI v3 RSpecs.
It is a complete solution that fully supports allocation and
experimentation with OpenFlow resources. Likewise, the OFE-
LIA control framework [12] which has been developed as
part of the OFELIA FP7 project, is responsible for the
management of OpenFlow resources. It contains AMSoil,
a light-weight framework for creating Aggregate Managers.
Using this framework, AMs for OpenFlow and VirtualMachine
experimentation have already been built in the context of
OFELIA testbeds.

Due to the fact that testbeds are heterogeneous in the context
of provided resources, various solutions have been proposed
for dealing with the problem of testbed management. Each of

Interfaces

Communication
Layer

Authentication
Authorization
Layer

Management Framework

.
o
5
3
=
=
1}
=
7}
an
©
<
5
=

Inventory Events Hooks

Overall architecture of the implemented management frame-

Testbed
Adaptation Layer

Testbed
Layer

Fig. 1.
work

them has been built under the concept that a subset of similar
testbeds must be first served and then strive to become as
generic as possible. In our approach, we focused on avoiding
the drawbacks of concentrating all the testbed functionalities in
one component, the AM. Instead, we decoupled the inventory
management of the testbed with the testbed’s specific function-
alities, exploiting this way the benefits of a Service Oriented
Architecture (SOA). We believe that these decisions together
with the open source nature of our implementation, will enable
easier adoption of our framework from different experimental
facilities. In the following section we provide more details
about the design and architecture of our framework.

IV. ARCHITECTURE

The design principles, along with the architecture of our
framework, were formed by taking into consideration all the
challenges and the desired characteristics that a management
system should feature, based on the problem analyzed in
Section II. We divide our framework in several fundamental
architectural components that each of them plays a significant
role in a specific problem area of the facility management.
We enumerate these as a set of basic functionalities that an
administrator would like a management framework to feature.
The overall architecture with all the components can be seen
in Figure 1.

A. Communication Interfaces

One essential characteristic of a management framework
is its versatility in terms of communication interfaces or
else APIs. In our implementation multiple communication
interfaces are utilized, supporting widely used protocols in the
field of testbeds like SFA and FRCP. Next to that, a REST API

has also been implemented, which is one of the best current
practices in the domain of web services.

The SFA endpoint is an implementation of the GENI AM
API v2 [13] which is used both in GENI and FIRE testbeds as
a way of federation. An upgrade to the new version (version
3) [14] is already under development and will be operating
side by side with that of v2 with no complications. This will
allow our framework to be reachable not only by tools that
are compatible with the latest API, but also by tools that can
only interact with v2 AMs.

The alternative to the SFA interface, where a formal stan-
dard API has to be followed, is the custom REST API
which is flexible to be implemented according to our needs.
This way we can implement any missing functionalities of
the SFA through the REST interface, like the administrative
management, which is not part of the SFA that primarily
targets to resource management. One more difference to the
SFA is that REST uses JSON serialization instead of XML
used by SFA.

Finally, the FRCP interface is primarily used for interoper-
ability with Resource Controllers (RCs) in order to automate
procedures that have to do with testbed specific functionalities.
It is not intended for getting a resource list or modifying the
inventory. The need of FRCP is crucial since next to SFA is
the other standard protocol emerged from testbed federations.
SFA is used for resource discovery and provisioning, whereas
FRCP for resource control. By featuring both interfaces, our
framework can easily provide the “glue” between these two
worlds and ease the transition from the resource provisioning
phase to that of the experimentation.

B. Authentication and Authorization

Authenticating and authorizing a user is of crucial impor-
tance to any testbed management framework. In our imple-
mentation the Authentication/Authorization (A/A) module is
the part where requests are accepted or denied based on an
authentication and authorization context. As mentioned above,
our framework features multiple communication interfaces and
therefore can serve requests from a REST, an SFA, or even
an FRCP interface. This implies that each interface receives a
different type of credentials, which requires the utilization of
different mechanisms in order to handle them successfully.

Initially, the authentication process takes place, confirming
the identity of the user who has sent a request. The authenti-
cation mechanism can be configured to trust and authenticate
the users of a specific set of certificate authorities. These
different certificate authorities usually are different testbeds
federated with the given testbed. The identification of the
user is done through client side X.509 certificates in all the
interfaces. However, the contents of these certificates differ
in some points. For instance, the SFA X.509 certificates use
an extension in order to provide a uniform resource name
(URN), which enables the testbed AM to link an associated
SFA request to a specific experiment that includes a set of
resources. These details impose a set of different routines

per interface that are capable of handling specific attributes
included in the certificates.

The phase of user Authentication, follows the initialization
of the Authorization context which consists of a set of simple
assertions that denote the user’s permitted actions on: (i)
Resources; (ii) Accounts; (iii) Reservations. These actions
designate if the user is permitted to: (i) Create; (ii) View; (iii)
Modify; or (iv) Release a resource, account or a reservation.
In SFA requests, there is always a signed XML file containing
the privileges of the user, which are mapped to the above set
of assertions by the A/A module. In the REST and FRCP
requests, the A/A assertions are filled based on the obtained
identity of the user from the certificate and his status or role. In
FRCP there are developments towards the adoption of signed
assertions that could be potentially used by the corresponding
routine of the A/A module for authorization context.

The goal of the A/A module is to provide the necessary
means to the testbed administrator so that he could easily
modify and describe his own fine grained policies. This is
accomplished thanks to the discrimination of policies which
are divided based on their protocol (SFA, REST, FRCP) and
then mapped to a common set of rules and assertions. Hence,
testbed administrators need only to modify the A/A module
once for the three different APIs.

C. Scheduling

The Scheduler is a critical component since it is the part
where decisions regarding resource reservation/allocation take
place based on the availability and any applicable policies.
More specifically, when a request for resource reservation
is received and forwarded to the Scheduler component, the
Scheduler decides based on the authorization context, whether
to fulfill the request or to reject it.

Aside from the simple policy of whether to accept or
deny a request, the Scheduler can be the point where more
sophisticated policies are enforced based on quota or the
roles/status of the users. Testbed administrators, only need to
modify the Scheduler module in order to define their resource
allocation policies. In our case, a simple First-Come-First-
Served (FCFS) policy was applied to the requests for resource
reservation. That does not limit the potential of implementing
a different policy based on user’s role/status.

Another significant functionality of the Scheduler module
is the capability of mapping a set of abstract resources to
the actual physical ones. In another words, users can ask for
resources without specifying which ones, letting the scheduler
decide for them which resources are better fulfilling their
requirements. For instance, a user can ask for two wireless
nodes featuring WiMAX connectivity to be reserved for 6
hours. The Scheduler will map his request to the first two
available nodes that have WiMAX capabilities and send the
reservation confirmation back to the user.

The aforementioned functionality has been developed in a
dedicated submodule of the Scheduler in a way that testbed
operators are able to import their own algorithms for mapping
resource requirements to the actual physical resources. These

decisions can be taken based on the utilization of the testbed,
the node’s characteristics or even required connectivity be-
tween the nodes. An important characteristic of a resource
is whether it is virtualized or exclusive. Virtualized is the
resource where multiple users can use one resource simulta-
neously, whereas exclusive resource is accessed by one person
at a time. Our current implementation works by favoring first
the less utilized testbed (in case more than one testbed is
managed), then chooses exclusive resources over virtualized
and the last criteria is the availability of resources in the
requested timeslot.

D. Testbed Adaptation Layer

The southbound of our framework is the Testbed Adaptation
Layer which is responsible for integrating the framework with
the resources and services of the testbed. Following a Service
Oriented Architecture (SOA), our framework in essence is
more an inventory service, rather than a fully functional AM,
since functionalities specific to the testbed are not performed
by the framework itself. Following the principles of SOA,
when a specific task is to be performed on the testbed, the
southbound of the framework is responsible for reaching the
corresponding service of the testbed. For instance, when an
SSH key of a user needs to be uploaded to a server, the
framework forwards it to the responsible tool of the testbed,
which handles the request and configures the SSH key to the
correct account.

The separation of our framework from the testbed’s pecu-
liarities, encourages its adoption from similar facilities, since
having all functionalities distributed to services offers better
control and maintenance of the testbed. On the other hand,
maintaining all the functionalities of a complex experimental
facility in one software component, is by its nature far more
complicated and inefficient. The different service components
of a testbed can be reached through the Testbed Adaptation
Layer, utilizing both REST and FRCP communication proto-
cols.

V. NITOS CASE STUDY

The NITOS [15] testbed is comprising of heterogeneous
type of resources (four different types of wireless nodes,
OpenFlow switches, WiMAX and LTE base stations), making
this way the management and administration of the facility
challenging. Furthermore, NITOS is part of multiple federa-
tions with other testbeds adding one more level of complexity
for the administrators.

In this section we present the integration of our framework
in the NITOS testbed and the challenges we encountered
during this endeavour, which provided us with valuable experi-
ences on how to build and manage a wireless testbed. We also
give the results from an initial performance evaluation, which
helped us to assess the limits of our framework. Following a
Service Oriented Architecture, we divided the core function-
alities of the NITOS testbed in different service components,
incorporating them in our management framework through the
adaptation layer described in the previous section.

A fundamental service of NITOS is the Chassis Manager
Cards (CMC) service, which is responsible for powering on/off
the nodes as well as reseting them, since human intervention
is not wanted and is not possible for the remote users of
the testbed. The goal is to allow users to issue commands
(on/off/reset) to the resources they have reserved, but prohibit
unauthorized usage of resources that are not reserved. Thanks
to the REST API provided by the management framework, the
CMC service can easily discover which resources are reserved
and by whom, thus permitting or denying commands received
by various users of the testbed.

In the same manner, there is a service responsible for the
provisioning of operating system images on the nodes, which
contacts first the management framework to verify if a user is
allowed to load an image on the requested nodes. This way
unauthorized usage of resources can be managed without any
intervention in the management framework, which works as
an inventory system tracking all the crucial information for
the services of a testbed.

An alternative method of service integration is provided
through actions/events triggered by the management frame-
work itself. In our case, this approach was carried out for the
following services which are responsible for the Linux account
management and the OpenFlow resources. More specifically,
when a new user/account is created in the management frame-
work through the REST API or the SFA endpoint, an actual
Linux account needs to be created in the NITOS server. Since
this is something specific to NITOS testbed and there is a
service responsible for creating Linux accounts, it should be
reached from the management framework for performing the
necessary actions. By exploiting the modular design of our
framework, the testbed operator needs only to extend a specific
module which is responsible for the adaptation layer with the
testbed. In turn, the management framework will contact the
responsible RC through its FRCP API in order for the latter
to create the Linux account.

Similarly, there is an RC responsible for the management of
the OpenFlow switches [16]. When a user reserves a number
of resources (wireless nodes), the RC sets up their backbone
connection with the OpenFlow network by configuring the
FlowVisor [17]. To this end, the administrator of NITOS needs
to configure the framework to be triggered like in the case of
the Linux account creation. The adaptation layer in essence
includes all the testbed’s specific functionalities which are
triggered when a new account is created or when a new
reservation is received. An administrator is able to configure
the adaptation as he wants based on events that are triggered
through the SFA API or when the state of the inventory
(resources, accounts) changes.

A. Performance Evaluation

Performance evaluation for software components helps soft-
ware architects to improve their frameworks. In our system it is
critical for the implemented framework to respond as quickly
as possible to requests coming from third parties, on both the
aforementioned interfaces (REST, SFA).

10 T T T T

8]
%
. 6F J
Q
g ¥
5]
E 4 1
= X
2+ J
%
0 px 1
10 250 500 750 1000
Number of Resources
Fig. 2. Performance evaluation of the REST interface for resource
advertisements, using a different number of resources.
10
8]
. 6F J
Q
2 %
5]
E 4 X 1
F
2+ J
*
o X]
10 250 500 750 1000

Number of Resources

Fig. 3. Performance evaluation of the SFA interface for resource
advertisements, using a different number of resources.

The most time consuming procedure of an Aggregate Man-
ager is the advertisement of all resources existing in the
inventory. In our experiments we have used five separate
inventories with 10, 250, 500, 750 and 1000 resources respec-
tively. For each one of the above inventories we requested
10 consecutive advertisements and measured the total time
needed to generate the advertisement individually in the SFA
and REST interfaces. We can see the results in Figs. 2 and 3.
The REST interface returns a list of ten resources almost in
the same time with the SFA interface, while in all the other
cases the SFA performs faster than the REST interface. The
reason is that in the case of 10 resources, little amount of data
is produced by both interfaces, whereas in the other scenarios
the difference in the produced data is substantial. It is worth
mentioning that the REST interface generates approximately 3
times more data in comparison with SFA (250 bytes compared
to 80 bytes of data per advertised node). But the case is that
both interfaces are meant to serve different types of requests,
thus a one to one comparison is not exactly fair.

REST is used to provide exhaustive resource descriptions in
contrast with the SFA which exposes only the basic character-
istics of the resources. A significant result obtained from the

"name”:

“node001”,
rn:publicid :IDN+omf: nitos.outdoor+node+node001”,
daf96b0a —8a87 —469f—bd6b—ed9e480930e8 ™,
“omf: nitos.outdoor”,
: true ,

“available
“exclusive”: true ,
“hardware_type”: "PC—Grid”,
“hostname ”: "node001”,

”1.8905 GB”,

“DIMM Synchronous™,

“ram”:
“ram_type ":
"hd_capacity 7: 759.6263 GB”,
“interfaces™: [

“name”: “node001:if0 ",
“urn”: Turn:publicid :IDN+omf: testserver+interface+node001:if0 ",
“uuid”: 743259870 —8491—4607—8e5¢c —73794bf21609 7,
“exclusive”: true ,
“role”: "control”,
"mac”: 700:03:1D:0D:90:DE”,
Tips T [
{
Tuuid”: "8e28bf90—a239 —4143—9ae0 —861e511ddf94 ™,
“address”: 710.0.1.17,
“netmask ”: 7255.255.255.07,
Yip_type”: “ipv4”

e

: "d4f46eaf—b75c—4baf —8172—fe2aea410ea5”,
“exclusive”: true,
“role”: “experimental”,
“mac”: "00:03:1D:0D:90:DF”,
Tips T [

1.
}
1,
TepusTio[
1

“eme”: {

.
}

<node component_id="urn:publicid:IDN+omf:nitos+node+node001”
component_manager_id="urn:publicid:IDN+omf:nitos+authority+cm”
component_name="node001” exclusive="true >
<available now="true”/>
<hardware_type name="PC—Grid” />
<interface component_id="urn:publicid:IDN+omf:nitos+interface+node001:if0”
component_name="node001:if0” role="control™>
<ip address="10.0.1.1" ip_type="ipvd”
netmask="255.255.255.0"/>
</interface>
<interface component_id="urn:publicid:IDN+omf:nitos+interface+node001:if1”

Listing 1. An advertisement of a single resource from the REST interface

performance evaluation is the existence of a tradeoff between
the time needed to provide a list of resources and the amount
of the information that can be exposed. In order to limit this
tradeoff, schemes with different backend technologies should
be evaluated like NoSQL databases.

In Listings 1 and 2 we quote examples of resource adver-
tisements for each interface. Due to the extensiveness of output
of the REST interface, a limited form of the advertisement is
presented. Extra information regarding features like CPU char-
acteristics and chassis manager cards also are being advertised
through this interface.

VI. CONCLUSION AND FUTURE WORK

Future Internet Infrastructures around the globe are always
evolving, offering new and heterogeneous resources over the
course of time to the research community. This growth im-
poses great opportunities for innovations in the context of
testbed management frameworks. In this paper we introduced
a management framework that is closely related with the OMF
control framework and the SFA protocol. We proposed an
architecture for testbed Aggregate Managers that separates the
actual management of the resources from its core components,
introducing an extensible way of supporting versatile type of
resources. In addition, we quoted a case study of a complete,
real world implementation of the suggested framework, de-
ployed in production mode within the NITOS Future Internet
Facility. Last but not least, we executed thorough experiments
over our software in an effort to evaluate its performance.

Although the proposed framework is in a stable version, it
is also in an ongoing development phase, adding new features

component_name="node001:ifl” role="experimental”/>
</node>
Listing 2. An advertisment of a single resource from the SFA interface

over the course of time. The implementation of GENI AM ver-
sion 3 will broaden federation capabilities with third parties by
supporting both version 2 and 3 of the SFA protocol. Finally,
an idea to extend our architecture enabling an hierarchical
structure between different instances of our framework, seems
very effective for infrastructures that incorporate more than
one testbeds.

VII. ACKNOWLEDGEMENTS

The authors acknowledge the support of the European Commission
through IP project Fed4FIRE (FP7-318389).

REFERENCES

[1] T. Rakotoarivelo, G. Jourjon, and M. Ott, “Designing and Orchestrating
Reproducible Experiments on Federated Networking Testbeds,” Com-
puter Networks, Elsevier, 2014.

[2] A. Quereilhac, M. Lacage, C. Freire, T. Turletti, and W. Dabbous,
“NEPIL: An integration framework for network experimentation,” in
19th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2011 IEEE.

[3] Federated Resource Control Protocol. [Online]. Available:
//github.com/mytestbed/specification/blob/master/FRCP.md

[4] H. Niavis, K. Choumas, G. losifidis, T. Korakis, and L. Tassiulas,
“Auction-based Scheduling of Wireless Testbed Resources,” in Wireless
Communications and Networking Conference (WCNC), 2014 IEEE.

[5] A.-C. Anadiotis, A. Apostolaras, D. Syrivelis, T. Korakis, L. Tassiulas,
L. Rodriguez, and M. Ott, “A new slicing scheme for efficient use
of wireless testbeds,” in Proceedings of the 4th ACM international
workshop on Experimental evaluation and characterization, 2009.

[6] Slice-based Facility Architecture. [Online]. Available: http://opensfa.
info/doc/opensfa.html

[7] Slice-based Facility Architecture wrapper. [Online]. Available: http:
//sfawrap.info/

[8] A. Willner and T. Magedanz, “FIRMA: A Future Internet Resource
Management Architecture,” Proceedings of the 2014 26th International
Teletraffic Congress (ITC), 2014.

[9] ORCA Control Framework Architecture. [Online]. Available: https:

//geni-orca.renci.org/trac/

FOAM OpenFlow aggregate. [Online]. Available: http://groups.geni.net/

geni/wiki/OpenFlow/FOAM

M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-

huri, R. Ricci, and 1. Seskar, “GENI: A federated testbed for innovative

network experiments,” Computer Networks, 2014.

OFELIA control framework. [Online]. Available: http:/fp7-ofelia.

github.io/ocf/

GENI Aggregate Manager API Version 2. [Online].

http://groups.geni.net/geni/wiki/GAPI_AM_API_V2

GENI Aggregate Manager API Version 3. [Online].

http://groups.geni.net/geni/wiki/GAPI_AM_API_V3

Network Implementation Testbed using Open Source platforms.

[Online]. Available: http://goo.gl/j6716k

D. Giatsios, K. Choumas, D. Syrivelis, T. Korakis, and L. Tassiulas, “In-

tegrating FlowVisor Access Control in a Publicly Available OpenFlow

Testbed with Slicing Support,” in Testbeds and Research Infrastructure.

Development of Networks and Communities, vol. 44, 2012.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-

eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”

OpenFlow Switch Consortium, Tech. Rep, 2009.

https:

[10]

(11]

(12]
[13] Available:
[14] Available:
[15]

[16]

(17]

