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Abstract—Network Functions Virtualization Management and
Orchestration (NFV-MANO) aims to provide a common inter-
face for technology developers and service operators for the
instantiation of virtual network functions over generic equip-
ment. Nevertheless, although NFV-MANO is currently targeting
datacenter operations and the deployment of virtual services
(through Virtual Machines or containers), it can easily extend
to generic networking devices, and alter their operation based
on the deployed network functions. In this paper, we consider
the case of a wireless testbed, with focus on wireless networking,
and adopt the OpenSourceMANO framework for provisioning
of services on top of the equipment. We provide the necessary
extensions to the framework in order to deploy services over
virtualized wireless network interfaces, hosted on the generic
networking nodes of the testbed. The extensions we focus on
regard the provisioning of virtual functions over wireless links,
that are traditionally not handled by the framework, and allow
easier interaction of the end-users with the testbed.

Index Terms—OpenSourceMANQO, NFV-MANO, wireless,
testbed, NITOS

I. INTRODUCTION

Network Functions Virtualization (NFV) is aiming at offer-
ing more agile resources to network providers, with improved
sustainability due to the softwarized nature of the resources.
The key features of NFV include reduced CAPEX and OPEX
costs, optimized reconfiguration of the provided services, easy
integration of new services and operational efficiency due
to the concepts of network slicing and multi-tenancy (i.e.
multiple operators using the same physical infrastructure).
Due to the above reasons, NFV is considered to be one of
the major enablers for the 5G technology [1]. Nevertheless,
Management and Orchestration (MANO) of the underlying
hardware resources is not an easy task, as the interplay of
the heterogeneous underlying equipment, providing different
APIs for their configuration, needs to be efficiently defined. To
this aim, the NFV-MANO [2] working group was formed by
ETSI with the purpose to define a generic architecture for the
management and orchestration of virtualized resources. The
hardware resources (compute, storage, network) are abstracted
through the framework, whereas focus is placed on the efficient
interconnection of the orchestrated components.

The NFV-MANO architecture is providing the necessary
abstractions of the underlying hardware equipment, and con-
centrates only on the orchestration, provisioning and cross-
interaction of the deployed functions, taking care of all the low
level configurations for setting up end-to-end paths between
the functions. Nevertheless, NFV-MANO is mainly addressing
datacenter resources, with the networking being programmed

through the SDN concept, whereas services are deployed using
either virtual machines or light-weight containers. However,
this approach can extend to generic networking devices, as
long as they are organized in a distributed fashion, which
includes other technologies (such as wireless) that are not cur-
rently addressed by SDN through production grade software.

In this paper, we present our approach in transforming an
open wireless testbed to an NFV-MANO compliant platform.
Taking advantage of the available wireless hardware support-
ing different technologies (LTE, WiFi, mmWave) we tailor
the OpenSourceMANO (OSM) [3] platform, the most widely
adopted framework for NFV-MANO, to provide services run-
ning on top of different wireless networks. Traditionally, tools
like OSM do not deal with network connections other than
Ethernet, and make use of network interface virtualization
enablers such as SR-IOV. Nevertheless, similar solutions for
the virtualization of the wireless interfaces also exist, and can
be used in order to bind services that are orchestrated with
these frameworks over wireless connections. The resulting
ecosystem is a powerful platform allowing the orchestration of
experiments using virtual resources, that off-the-shelf supports
portability from any other OSM-compliant site to the testbed.

The rest of the paper is organized as follows: Section II
is proving a brief description of the testbed’s resources and
former experimentation methodology. Section III is detailing
our architecture for provisioning the testbed with the NFV-
MANO paradigm. In section IV we discuss the experimenta-
tion potential of the platform, and in section V we conclude.

II. NITOS TESTBED ENVIRONMENT

The target facility used to develop our scheme is the
NITOS testbed (http://nitos.inf.uth.gr), located in University of
Thessaly, Greece. The testbed is providing in a 24/7 fashion
remotely accessible resources, targeting at wireless networking
based experimentally driven research. The testbed is consisting
of over 100 nodes, equipped with key technologies:

o All the nodes are high-end PCs, equipped with Core-i7
processors and 8 GBs of RAM each, and feature at least
two IEEE 802.11 a/b/g/n/ac cards, compatible with Open
Source drivers (e.g. ath9/10k) used for WiFi research.

e« Two commercial off-the-shelf LTE access points are
available for experimentation, along with the respective
Core Network solution. Both femtocells and core network
are programmable through testbed services that are avail-
able [4]. About half of the nodes are equipped with LTE
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Fig. 1. VNF instantiation on a NITOS node: each VNF is either
bridged/routed with iptables to the underlying physical wireless network
(WiFi/LTE/mmWave).
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dongles, that allow the establishment of an operator-grade
LTE network, using testbed specific SIM cards.

e Over 20 different SDR devices exist in the testbed, that
are compatible RF front-ends for open source implemen-
tations of base stations (such as OpenAirInterface [5]).

« Six mmWave devices are installed in the testbed, that are
reachable from all the testbed’s nodes and the creation of
high-throughput wireless point-to-point links.

o All the nodes of the testbed are interconnected through
different hardware OpenFlow switches, organized in a
tree topology. Users can set their own controller to
manage the flows of the nodes that they are using.

The testbed is organized in three different setups: An indoor
RF-isolated, an outdoor setup prone to uncontrolled external
interference and an office setup with mild interference settings.
Resources can be mixed from the different locations in order to
create a versatile experimentation environment. The nodes can
be reserved through a portal service, for up to four hours per
slot. Several tools are available for experimentation, supporting
large scale effortless deployment of the environment (e.g. the
cOntrol and Management Framework - OMF [6]).

ITII. SYSTEM ARCHITECTURE

The fact that traditionally NFV-MANO has been developed
for orchestrating services and functions over datacenters hin-
ders us from considering wireless services for deployment
over them. Nevertheless, the structure of a testbed can be
considered as a distributed set of nodes managed by an
infrastructure manager such as Openstack or OpenVIM. For
the differentiation of the services deployed over the nodes, we
organize the testbed in four different “datacenters”:

« SDR datacenter: all the nodes with SDR capabilities are
included in this datacenter. VNFs/PNFs related to the execu-
tion of services interfacing SDRs are using this datacenter.

« LTE datacenter: all the nodes that have LTE dongles are
included in this datacenter. All the services using the LTE
network to transmit data are using this datacenter.

« WiFi datacenter: all the nodes with WiFi connections are
included in this datacenter. Similar to the previous one, all
the VNFs/PNFs deployed can use a WiFi connection.

« Ethernet/mmWave datacenter: the rest of the nodes that
have Ethernet connections and use the mmWave equipment.

Depending on the type of services to be deployed, we target
deploying the VNFs on top of the physical nodes as shown in
Fig. 1. The VNFs (Virtual Machines with ready to provision
services) are making use of a bridged Ethernet connection with

the physical interface that transmits the data over the air. For
the cases that a bridged connection is not feasible, we route
the traffic with new routing and iptables rules.

The VIM of the testbed which has been extended is Open-
VIM [7]. We make use of existing services for the config-
uration of the LTE equipment (bscontrol/LTErf [4]), or the
automatic configuration of the hostapd instance for creating
WiFi Access Points in the testbed. In order to host VNFs
that use the same virtualized physical wireless connection,
we introduce different slicing schemes that are managed by
the same services, whenever a VNF Description (VNFD) is
received from the OSM instance. In the following subsections,
we initially describe the employed methods for slicing the
wireless infrastructure, and subsequently provide details on
how each node is virtualized and orchestrated with OSM.

A. LTE Network Slicing

Although there has been significant work on the RAN based
slicing for LTE (e.g. [8], [9]), yet, no commercial products
seem to integrate such functionality. For the NITOS case, we
employ the off-the-shelf LTE infrastructure that is offered.
Our high level target in slicing the network with a holistic
approach (considering the RAN and Core Network as one
entity) and to provide guarantees for different users on the
usage of the network resources offered by the infrastructure.
For this purpose, we exploit the notion of different Packet Data
Networks (PDNs) to achieve this functionality, as follows:
each PDN is realized as a separate tunnel for user plane traffic,
running from the PDN-GW component of the Core Network
(Evolved Packet Core - EPC) to each network UE. For the
RAN case, the PDN is mapped to different Access Point
Names (APNs). When a UE requests to connect to the LTE
network, the RRC messaging exchange is containing the APN
details that the UE wishes to connect to. These messages are
exchanged between the UEs and the EPC. If the information
is valid, and such a PDN is configured in the infrastructure,
the UE is admitted to the network. The user plane data (data
the UE is sending over the network) are then transferred from
the base station to the EPC and vice-versa over dedicated GTP
tunnels. The GTP tunnels are aggregated to a single interface
on the core network side, per each PDN.

Each PDN is a separate broadcast domain for the network,
and the UEs of the network use addresses belonging to this
domain. Since all the clients of the LTE network are from
the EPC’s perspective interfaced by single tunnel interfaces
per each PDN, we are able to isolate the flows of each PDN.
Although UEs may be associated to the same base station, and
their traffic is traversed through the same EPC, the operate in
an isolated manner if they belong to different PDNs. Using
this functionality, we can throttle the traffic that is exchanged
over the network per each PDN from the EPC side; all the
exchanged user traffic is traversing the EPC, even if a UE
is trying to reach a nearby UE. This throttling is based on
the maximum Uplink (UL) and Downlink (DL) traffic that
the clients in each PDN exchange over the LTE network. An
illustration of this slicing functionality is depicted in Fig. 2. In
the illustration, the blue (PDN1) and the red (PDN2) clients
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Fig. 2. LTE slicing based on PDNs in the NITOS testbed: each PDN equals to a unique path from the core network (P-GW component) to the wireless RAN,
through which only clients belonging to the same PDN can communicate. Each PDN can be set to exchange a value of a maximum UL/DL aggregate traffic

for all the clients belonging to it.

can only communicate with clients belonging to their own
PDN. From the Core Network side, the traffic is throttled
between the two different APNs, from the PDN-GW.

B. WiFi Network Slicing

For the WiFi case, we employ the hostapd service to
setup wireless Access Points (APs). Through its configuration,
hostapd can setup over a single physical card multiple AP
instances, known as virtual Access Points (VAPs). Each VAP
has separate settings for the transmitted ESSID parameter,
which the end user devices employ to associate to the network.
Physical network parameters, such as transmission power and
channel configuration are the same across different VAPs.
However, by using the separate data queues for the different
types of data (Voice, Video, Best-Effort and Background) that
the WiFi drivers have, prioritization between different VAP
instances can take place, as it has been shown in other works,
e.g. [10], [11]. However, given the Listen-Before-Talk (LBT)
protocol of WiFi, all the end-users compete in order to get
access to the medium. Hence, contrary to the LTE case, no
guarantees can be given through these methods on the per-
VAP exchanged traffic. Nevertheless, these methods regulate
the probabilities of each VAP to access the channel in a
percentage of the total available capacity, constrained by the
external interference that is present in the served region.

C. mmWave Node Slicing

For the case of the mmWave nodes employed in NITOS we
use the following approach. Each of the nodes is terminated to
an OpenFlow switch, communicating over a specific VLAN.
Different VLANs are allocated for each of the nodes. The
termination switch of the mmWave nodes is connected to
an other set of OpenFlow switches that interconnect the
rest of the nodes of the testbed. All these switches can be
programmed with individual controllers that each experimenter
can setup, by slicing the switches using FlowVisor. For each
user controller, only the ports that communicate with the
reserved testbed nodes in this testbed account are included in
the configurable flow space of the end user. On the mmWave
nodes, Open-vSwitch (OvS) is used to bridge the Ethernet
VLAN interface with the actual radio interface of the node.
This gives us the advantage that all the nodes of the testbed
can use the mmWave network connections, by setting up

the correct VLAN interface on the node and enabling the
respective VLANs on the OpenFlow switches.
D. Testbed Virtualization Enablers

The instantiation process of a chain of VNFs has the follow-
ing workflow. Initially the user interfaces a User Interface (UI),
where the to be deployed VNFs are selected by a catalog of
supported services. These services are subsequently configured
in terms of their network interfaces (e.g. SR-IOV), and features
regarding the virtualization technologies for the underlying
physical processor, etc. The VNFs can be linked to form a
chain (VNF Forwarding Graph - VNFFG), used to execute a
specific process. When the user is instantiates the services, the
VNF descriptions are sent to the underlying VIM for preparing
and configuring the physical infrastructure that will host them.

// Rest of VDU configuration omitted

vdu:
name: "ethl"
type: "EXTERNAL"

external-connection-point-ref: "ethl"
virtual-interface:

type: "WIFI-ACCESS-POINT"

vpci: "0000:00:0b.0"

virtual-access-point:

id: "virtual-access-point-1"
essid: "VWLAN1"
mode: "g"

channel: 1
floating-ip-needed: "false"
// Rest of VDU configuration omitted

Listing 1. Sample of VDU configuration for a WiFi AP: multiple can be
instantiated over the same node with the bscontrol service taking care of the
low level networking and bridging configuration.

Before the instantiation of VNFs over the testbed’s nodes
(see Fig. 1), the aforementioned processes for slicing the
infrastructure need to be invoked, so as the underlying physical
connections are configured. In the traditional NFV-MANO
architecture, these processes are configured by a network
controller. For the case of the testbed, we extend the bscontrol
service in order to enable such configuration. Hence, when
the VNFDs are delivered from the MANO orchestrator to the
VIM component of the testbed, the VIM is invoking specific
commands of the bscontrol service. The service has a REST
API, and is translating every incoming request to a string of
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(a) Orchestration of VNFs belonging to specific slices of the LTE
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(b) VNF instantiation over WiFi links in the testbed: VAP creation
and physical interconnection is provided by the bscontrol service
whereas the iptables rules on the host controlling the VAP instances

ensure that VNFs on the clients can communicate only with VNFs
belonging to the specific VAP they are associated to.

Fig. 3. VNF Orchestration with WiFi and LTE connections.

commands that need to be executed over the host nodes of
the infrastructure. For example, consider the case when the
user wants to orchestrate a VNF that will be using a WiFi AP
connection. When this type of connection is selected from the
user for the VNF, the VNFD is augmented by a new section
regarding the network configuration. This includes configu-
ration of the wireless channel, the transmission power, the
ESSID and the WiFi mode (a/b/g/n). When this information
is extracted from the VNFD by the VIM, the bscontrol service
is invoked, with the parameters being passed to it being the
node that it will use as a host (which is outputted from the
scheduler interface of the VIM) and the WiFi configuration.

// Rest of VDU configuration omitted

vdu:
name: "ethl"
type: "EXTERNAL"

external-connection-point-ref: "ethl"
virtual-interface:
type: "LTE"
vpci: "0000:00:0b.0"
virtual-apn:
id:
name:
gci: 5
ulambr: 50000000
dlambr: 50000000
// Rest of VDU configuration omitted

Listing 2. Sample of VDU configuration for a LTE AP: the client that will
be attached to APN1 will get at max 50 Mbps for DL and UL traffic

"virtual-apn-1"
"APN1"

The bscontrol service will subsequently access the node,
via a secure shell connection, and setup the WiFi connection:
1) initially, it brings up the wireless driver, 2) configures
the hostapd interface with multiple VAPs, 3) brings up the
VAP and configures addressing on the physical interface and
4) sets up the forwarding rules for each VNF that will be
deployed over the VAP. Subsequently, the VIM is deploying
the VNF on the host, whereas all the underlying configuration
has been taken care of. A similar procedure can take place for
several VNFs that can be configured as WiFi Stations (STA) of
specific VAPs. When this process is finished, and orchestration

has taken place, we can have a topology that is illustrated in
Fig. 3b. We note here that for the WiFi case, forwarding of
the traffic of VNFs over the physical interfaces is not handled
as the rest of the connections (e.g. using the libvirt bridge
interface) but is using iptables. This comes from the fact that
such wireless interfaces cannot be added to a bridge interface,
as the bridge is provided by the bridge-utils package. This
process is overcame by using an Open-vSwitch OpenFlow
enabled bridge, but further configuration needs to take place
for handling the separate flows per each VNF per each sub
interface per each host machine. Therefore, iptables rules are
established by the bscontrol service to setup the forwarding
plane per each VNF on each host machine.

// Rest of VDU configuration omitted

vdu:
name: "ethl"
type: "EXTERNAL"

external-connection-point-ref: "ethl"

virtual-interface:
type: "MM-WAVE"
vpci: "0000:00:0b.0"
millimeter-wave:

id: "millimeter-wave-2"
physical-node-id: 2
mcs: 7

// Rest of VDU configuration omitted

Listing 3. Sample of VDU configuration for a mmWave node: all the
underlying VLAN configuration is handled by the NITOS bscontrol tool

For the LTE case, the VNFD is augmented with the PDN
connection settings. These include the PDN configuration,
the UL/DL Aggregate Bandwidth that will get over, and the
subscriber information of the LTE dongle mounted on the host
machine that VIM has scheduled to instantiate the VNF. Upon
receiving this information, the bscontrol service configures the
EPC with the PDNs, adds the subscriber to the PDN, and
connects on the node and connects the UE to the LTE network
of the testbed. In the case that a user orchestrates an Ethernet
based client to use the PDN information of the LTE network,
the service is additionally configuring up the routing rules for



the interconnection of the two hosts (see Fig. 3a).

From the aforementioned information, it is clear that the
end-user only interfaces with the high level interconnection
of the VNFs, and the network connection type over which
the traffic will be traversed. The rest of the processes are
taking place in a fully automated manner, and create the
circumstances for the further integration and evaluation of
other NFV-MANO functions to the testbed. Listings 1, 2 and 3
present the augmented YANG description of the VDUs used
to orchestrate the WiFi AP and LTE nodes of the testbed.
As we see, information about the wireless channel and name
of the WiFi network are passed to the orchestrator for the
WiFi case. Similarly, the APN configuration is being passed
for the LTE case. This information is further redacted from
the VIM, and by parsing it sends the appropriate commands
to the bscontrol service that allows the configuration of the
underlying networks. Once this process is done, the rest of the
orchestration takes place, involving the deployment of services
on top of the network bridges with the wireless connections.

IV. DISCUSSION

The provided functionality is able to accelerate the de-
ployment of new services that may be running over different
networks, towards their experimentally driven validation. The
presented approach, allows us to quickly and effortlessly
deploy new services that are described in the format of VNFDs
directly over the testbed, or any other physical infrastructure
orchestrated through OSM. Hence, this approach is able to
provide enhanced portability of experiments over the testbeds,
regardless of their type, as long as they can process YANG
based service descriptions. Providing such extensions to the
testbed also allows us to milden the learning curve of using the
infrastructure; the end-user is only presented with a repository
of VNFs, which can be instantiated from a higher layer by or-
ganizing and designing the interconnection of the components
through OSM. After the instantiation of the services, users get
root access on the deployed VNFs.

Moreover, the service orchestration can be further im-
plemented using tools like JuJu, Ansible or Cloud-Init, for
the seamless and effortless bootstrapping and on-boarding of
services on the VNFs. Processes that are based on software
and usually take up a lot of time for the setup of the
experimentation environment in the testbed, e.g. setting up
a software based base station over a USRP device, can be
fully automated, by the selection of the interfaces that will
backhaul/fronthaul the base station from the top level.

Finally, a concern that arises from the integration of the
YANG based description of services, is the intercommunica-
tion with the existing protocols for testbed resource reservation
and access. The existing mechanisms are based on the Slice-
based Federation Architecture (SFA) protocol [12], which
represents the resources of the testbeds with XML docu-
ments, referred to as Resource Specifications (RSpecs). In this
context, we consider the interplay between the two different
formats of resources as follows: the users submit a VNF
description of the services that is translated through testbed

tools to physical resources (RSpecs), through appropriate calls
to the SFA API of the testbed. After this process, the VNFs
can be instantiated as normally using tools like OSM.

V. CONCLUSION

In this paper we presented some extensions to the well-
known OSM framework for orchestrating VNFs over wireless
links over the generic infrastructure in the NITOS wireless
testbed. We presented the scheme for slicing the different
wireless networks available in the testbed (LTE, WiFi and
mmWave) and how this information has been propagated in the
VNF descriptions. Dedicated testbed services are in charge of
parsing this information (inside the VIM of OSM) and setting
up the physical network interconnection between testbed nodes
prior to the VNF deployment. In the future we foresee to
integrate our extensions with other VIMs such as Openstack,
and support newer versions of OSM (the existing functionality
is tested in OSM Release TWO and THREE). Also, we aspire
in creating virtualized instances of the software base stations,
with automatic selection of the backhaul/fronthaul network

interfaces from the orchestrator pane.
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