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Abstract—In this paper, we examine the problem of the
efficient allocation of resources in networking testbeds, which
cannot be shared among the experimenters. We highlight the
similarities with the housing market where indivisible network
resources play the role of houses, while experimenters the role
of owners. We adopt the Top-Trading-Cycles (TTC) algorithm
for providing Pareto efficient allocations and we compare this
approach with the current mechanism of the simple First-Come-
First-Served (FCFS) approach used in most networking testbeds.
A formulation of the problem is provided where we describe the
average utility of the system as a function of the desired testbed
resources of the experimenters and the final allocation of the
resources to them. In the performance evaluation we observe
that TTC outperforms FCFS in all the examined scenarios and
achieves almost 95% better average utility in certain cases.

I. INTRODUCTION

Networking experimentation testbeds have been developed
around the world in order to satisfy the needs for real life large
scale experimentation by initiatives and projects like GENI
[1] in US and FIRE [2] in Europe. Lately these efforts have
been transformed to the provision of infrastructure capable of
5G experimentation originated by the funding of 5G-PPP pro-
gramme [3], which fosters the collaboration of academia and
industry on the research and advancement of 5G technology.
While the support and funding for experimentation facilities
present high dependency on public funding [4], mainly from
H2020 research projects in Europe and the PAWR program
[5] in US, the increasing demand for experimentation on
buzzword technologies like 5G and IoT creates pressure for
testbed sustainability. As the capital expenditure for testbed
advancements follows the pace of research project funding,
the efficient allocation of testbed resources is of prominent im-
portance. Academic and industry research groups increasingly
seek access to cutting-edge equipment in order to evaluate
their concepts and frameworks in realistic environments and
obtain valuable measurements. This fact leads to an increasing
number of users in networking testbeds and a high competition
among the community for the reservation of available testbed
resources.

Testbed owners have been in a constant effort of upgrading
their management frameworks by following the latest trends
on testbed federations, which allow them to be part of large-
scale federated testbeds that experimenters from around the

world can use with the same set of tools, like in Fed4FIRE
[6]. However, in these efforts there is no focus on optimizing
the resource allocation of the provisioned resources, since most
of the testbeds work in a best effort manner, meaning that the
testbeds’ reservation management frameworks provide access
to resources as long as there is availability in a First-Come-
First-Served (FCFS) priority.

The same principles apply to our own networking testbed
NITOS Future Internet experimental facility [7], which pro-
vides resources that cover most of the wireless and wired
network trending technologies. In more detail, NITOS operates
24/7 all year and offers remote access for wireless experi-
mentation to those who want to deploy and experimentally
evaluate networking protocols and applications in real world
settings, incorporating technologies that include and are not
limited to WiFi, 4G, 5G, IoT, SDN, SDR, Cloud Computing
and more. For the management of the daily operations of the
testbed we have built a management framework called NITOS
Broker [8], which is responsible for the discovery, reservation
and provisioning of the testbed resources to experimenters
requesting access. In this context, the Broker can provide
a list of the available resources to the experimenters in a
calendar format, allowing them to reserve in a FCFS manner
the resources they choose.

Taking into consideration the problems of overuse of re-
sources and unfairness of the current reservation mechanism,
we came up with a more efficient and fair scheme that
increases the total utility of the system by not compromising
ease of use for the experimenters. In this paper, we present
our solution which will replace the existing mechanism imple-
mented in the NITOS Broker. Our proposed mechanism stems
from the domain of housing market where the exchange of
indivisible resources among owners is conducted without the
use of money. The similarities with the domain of experimen-
tation testbeds where experimenters try to obtain indivisible
resources without any form of currency, allow us to apply a
slightly modified solution to an algorithm used in the housing
market.

The rest of the paper is organized as follows: In Section
II related work is discussed and in Section III the problem is
analyzed, resulting in a system model formulation. In Section
IV an overview of the algorithms for resource matching is
presented and in Section V the evaluation of the proposed978-1-7281-4973-8/20/$31.00 c© 2020 IEEE



scheme is provided. Finally, in Section VI we conclude our
work and provide our future plans.

II. RELATED WORK

In the domain of resource allocation in networks many
studies have been published, but very few were focused on
allocating resources in networking testbeds. To our knowledge,
none had approached the problem from the socioeconomic
aspect of matching resources to experimenters as in the market
of houses and owners.

An initial approach on improving the reservation mechanism
of NITOS has been proposed in [9], looking at the problem
from an auction based perspective. The proposed solution
enabled the experimenters to provide their actual valuations
regarding the requested resources and introduced a closed
virtual economy/point system that allowed the experimenters
to bid on the resources they wanted. A scheme in the domain
of auctions has been studied in [10] as well, in which a
fist-price auction was utilized for solving the problem of
resource reservation among the experimenters of a wireless
testbed. Our approach differentiates from auction schemes like
the aforementioned and the one proposed in [11], since it
does not require a virtual currency and does not introduce
extra implementation overhead that a charging/auction system
requires. The experimenters do not have to think how much
they will bid on the resources or worry about running out of
any virtual currency.

To our best knowledge, most of the efforts on resource
allocation are focused on virtualised networking resources
[11], [12], [13] and none of them is focused on indivisible
resources offered by testbeds to experimenters. The afore-
mentioned studies focus on allocating divisible resources like
bandwidth, CPU power, VMs etc. by formulating and solving
complex optimization problems that often require heuristic
solutions of NP-hard time complexity problems [14]. To the
best of our knowledge, due to our involvement in several EU
and US testbed development initiatives, these virtualization
solutions have not yet been deployed to the testbed manage-
ment systems. In our work, we focus on indivisible resources
like the wireless nodes which can be employed as WiFi APs,
WiFi stations or LTE Base Stations and User Equipment (UE)
devices. Additionally, our approach which originates from
matching algorithms for the housing market domain, requires
polynomial time complexity to reach a stable allocation.

III. SYSTEM MODEL

A. Experimenting with Preferences of Equivalent Nodes

We consider an experimentation testbed with a set of nodes
H = {h1, h2, ..., hN} that can be reserved by experimenters
in a time-slot based manner, with N being the number of the
testbed’s nodes. We focus on a specific experimentation time
slot, for which a set of experimenters A = {a1, a2, ..., aM}
have declared their preferences a priori up to a deadline before
the start of the slot. Each experimenter chooses a set of nodes
Pa ⊆ H that will be needed for an experiment in a preference
list. After the deadline of nodes preference declaration, the
testbed broker, which is responsible for allocating testbed

resources to the experimenters, runs a random endowment of
one node per experimenter, leading to an initial endowment e,
through which one node of the set P = Pa1

∪Pa2
∪ ...∪PaM

is allocated to each experimenter a ∈ A. Based on the
market setup 〈H,A, e〉, the broker runs the Top Trading
Cycles algorithm (TTC) [15], to allocate the first nodes to
each experimenter. The algorithm runs max(|Pai |) times, with
i = 1, 2, ...,M and |Pai | being the cardinality of Pai , leading
to a node allocation of the set Pai for each experimenter ai,
i = 1, 2, ...,M .

We consider that the experimenters’ satisfaction follows the
law of diminishing marginal utility, which has been adopted in
the paper as the dominant economic approach in problems that
tackle allocation of resources to human beings [16], [17]. As
the number of requested nodes per experimenter may vary, we
express the utility function of its experimenter in a normalized
form as follows:

U(ai) =
ln
(
1 +

Jai

1+Kai
|Pai
|
)

ln(1 + |Pai
|)

(1)

where |Pai | represents the cardinality of Pai and Jai is the
Jaccard similarity coefficient [18] that measures the similarity
between the set of initial experimenter’s choices Pai

and the
set of its allocated nodes Pai

, resulting from the broker’s
allocation based on the TTC. The Jaccard similarity coefficient
is expressed as:

Jai
=
|Pai
∩ Pai

|
|Pai
∪ Pai

|
(2)

where Jai ∈ [0, 1] for each experimenter ai. With Kai we
represent the total number of affected node choices of other
experimenters, resulting from the allocation P ai

, and it is
expressed as:

Kai
=
∑
j 6=i

|Pai
∩ Paj

| (3)

with j = 1, ...,M and j 6= i. Consequently, an experimenter’s
utility is positively affected by the level of satisfaction of its
initial requests. At the same time, an experimenter’s utility
is negatively affected as Kai increases, reflecting the level
of externality of an experimenter’s satisfied choices to the
interests of other experimenters. With our approach, we aim
to allocate the testbed resources providing a solution to the
problem described as follows:

max
P

1

M

M∑
i=1

U(ai)

subject to |P| ≤ |H|
and |Pai

| > 0,∀i = 1, ...,M (4)

B. Experimenting with Weighted Preferences

The system model presented in Section III-A refers to
experiments where nodes are considered equivalent, as for
example in ad hoc network experiments. We extend our study
into more complex scenarios, where hierarchy of nodes is
needed, such as in experiments including an LTE base station
and a number of UEs. To this direction we enhance our



exp1 exp2 exp3 exp4
node 3 node 4 node 1 node 3
node 2 node 1 node 4 node 2
node 4 node 2 node 3 node 1
node 1 node 3 node 2 node 4

TABLE I: Experimenters’ Preferences

system model to include different sets of preferred nodes
per experimenter. In this case each experimenter a ∈ A has
declared its preference sets Pa,l, for l = 1, ..., L, with L being
the number of hierarchical groups of nodes, requested for its
experiment. The requests of experimenter ai are represented
as Pai

= Pai,1 ∪Pai,2 ∪ ...∪Pai,L. The total experimenters’
requests for the time slot of interest are described by the
superset P = Pa1 ∪Pa2 ∪ ... ∪PaM

.
To reflect the different levels of necessity of nodes of each

group, we assign weights wi,l that represent the importance
of nodes belonging to group l to the experimenter ai, with
Li∑
l=1

wi,l = 1. The utility for each experimenter, after the broker

has run and assigned nodes, is expressed as:

U(ai) =

L∑
l=1

wi,lU(ai, l) (5)

where U(ai, l) is the utility described in equation (1), and
represents the utility of experimenter ai for nodes belonging
to group l. We aim to allocate the testbed resources for cases
of experimentation with weighted preferences, providing again
a solution to the problem described in equation (4).

Fig. 1: TTC 1st Iteration

IV. RESOURCE MATCHING PROBLEM

The problem of allocating nodes to experimenters has
significant similarities with the problem of the housing market,
where individuals already own a single house and have pref-
erences over the rest of the houses. This problem of trading
indivisible items without using money, has been investigated in
[15], where the Top Trading Cycles algorithm (TTC) has been

Fig. 2: TTC 2nd Iteration

proven to provide Pareto efficiency and lead to a core-stable
allocation.

In our case, nodes play the role of houses, while ex-
perimenters are essentially the owners. In more detail, the
problem consists of a set of experimenters that provide a
set of preferences over a finite amount of available nodes
provided by the experimentation testbed. In order to better un-
derstand the applicability of the TTC algorithm over the node
allocation problem, consider the following example where 4
experimenters provide their preferences over 4 available nodes
as shown in Table I. Experimenters’ first preferences are in
the top row, while at the bottom the least preferred nodes can
be found. For sake of simplicity, we consider for the initial
allocation that i-th node belongs to i-th experimenter, meaning
that node 1 belongs to experimenter 1 and so on.

In the first iteration that is presented in Figure 1, TTC will
detect a cycle where experimenter 1 wants node 3, which
belongs to experimenter 3 who in his turn wants node 1 that
belongs to experimenter 1. A mutual exchange between these
2 experimenters is done and they get removed before the next
iteration starts. In this iteration that can be seen in Figure 2,
TTC detects a cycle between experimenter 2 and 4, thus an
exchange is performed where experimenter 2 gets node 4 and
experimenter 4 gets node 2. The final allocation of the TTC
algorithm is shown in Table II, which is a core allocation,
meaning that there is no other allocation an experimenter
would have a greater preference for.

exp1 exp2 exp3 exp4

node 3 node 4 node 1 node 2

TABLE II: Final TTC Allocation

Combining the TTC algorithm together with the formulation
of the problem presented in the previous section, we derived
an extended TTC algorithm (See description in Algorithm 1).
The algorithm takes into consideration the initial conditions
where A = {a1, a2, ..., aM} denotes the set of experimenters
trying to reserve nodes, H = {h1, h2, ..., hN} denotes the
available nodes and P = Pa1

∪Pa2
∪...∪PaM

their preferences
over these nodes. The algorithm continues as follows: In every
iteration the TTC takes as input a random initial allocation, a
set of the experimenters competing for the available nodes
and their sets of preferred nodes. Each iteration results to
a stable allocation that provides 1 node per experimenter.
Before continuing, the allocated nodes are omitted from the
set of available nodes, as well as from the preference sets



of the experimenters. This can result in situations where the
initial preferences of an experimenter cannot be served because
requested nodes are no more available. In these situations,
our algorithm randomly allocates a node from the remaining
available nodes to the experimenter, in order to satisfy the
cardinality of its initial preference set. The algorithm termi-
nates when there are no available nodes left or after reaching
max(|Pai |) number of iterations.

For the sake of completeness, we describe in the context
of our problem formulation, the FCFS mechanism in Algo-
rithm 2. The algorithm terminates when there are no more
experimenters or available nodes. In every iteration, the first
experimenter gets all the nodes listed in its preference set
Pai

as it is the first experimenter using the system. Before
moving to the next iteration, the allocated nodes are removed
from the set of available nodes, as well as from the preference
sets of the rest of the experimenters. In the situations where
experimenters cannot receive the nodes, requested initially
by their preferences, a random node from the available ones
is allocated to them. This reflects the scenario where an
experimenter had in his mind some resources to reserve but
these resources were not available because someone else had
already reserved them. In this case, he picks some resources
from those that are available.

Algorithm 1 Top Trading Cycles (TTC)

A = {a1, a2, ..., aM} denotes the set of experimenters
trying to reserve nodes
H = {h1, h2, ..., hN} denotes the set of available nodes
Pai

denotes the preferred allocation for experimenter ai
Pai

denotes the final allocation for experimenter ai
while (Pa AND H) are not empty do

Initial random allocation of 1 node per experimenter→ e
Run the TTC algorithm based on the market setup
〈H,A, e〉 (i.e. Detect cycles and mutual exchange op-
portunities)
TTC results in a core allocation of 1 node per experi-
menter Pai

In the case a node is no more available, a random node
is allocated to the experimenter from the available ones
Remove allocated nodes H = H−Pa

end while

Apparently the FCFS mechanism utilized in most experi-
mentation testbeds, provides practical advantages as it is an
easy to understand and implement scheme for managing the
testbed resources, however it lacks fairness and efficiency. The
FCFS scheme does not leave room for the testbed owner to
improve the overall utilization of the testbed by allowing mu-
tual beneficial exchanges of nodes between the experimenters.

For the sake of providing an illustrative example of how
TTC is collecting resource requests by the experimenters,
before reaching a stable core allocation of resources based
on the received requests, we present a flowchart in Figure 3
where the interaction of the experimenters with the testbed
management services is depicted. More specifically, the ex-
perimenters would submit their requests with their resource

Algorithm 2 First Come First Served (FCFS)

A = {a1, a2, ..., aM} denotes the set of experimenters
trying to reserve nodes
H = {h1, h2, ..., hN} denotes the set of available nodes
P = Pa1 ∪Pa2 ∪ ...∪PaM

denotes the union of preference
set by each experimenter
while (A AND H) are not empty do

Allocate the desired set of nodes Pai
to experimenter ai

Remove allocated nodes from the set of available nodes
H = H−Pai

Move to the next experimenter i+ 1
end while

Experimenter
2

Experimenter
N

Testbed	Resource
Reservation
Service

Experimenter
1

Reservation	Request	Nodes	{Nx,	Ny,	...	Nz}

Reservation
response

Reservation	Request	Nodes	{Nx,	Ny,	...	Nz}

Reservation	Request	Nodes	{Nx,	Ny,	...	Nz}

TTC	Algorithm	
Allocation

Reservation
response

Reservation
response

End of
resource
requests'
window

Fig. 3: TTC Interaction Diagram

preferences to the testbed reservation service up until a specific
time which denotes the end of resource requests’ window. At
that time, the TTC would provide a Pareto efficient allocation
based on the input received by the experimenters’ preferences
and the available nodes of the testbed. The difference with
the FCFS algorithm is that experimenters receive a response
to their reservation requests when the time window allowed
for request submissions has ended. In the next section we
provide an evaluation of the degree of improvement that TTC
introduces compared to FCFS in terms of better utilization of
the testbed’s resources.

V. SYSTEM EVALUATION

A. Scenarios with Nodes with Equivalent Utility

In order to perform the evaluation of the proposed scheme,
we conducted several simulations based on a set of scenarios
that apply to our real-life experience from the daily operation
of the NITOS experimentation testbed. More precisely, we
started by testing the two algorithms described in the previous
section with scenarios where the experimenters’ preferences
had equivalent utility over the nodes. We divided our simula-
tions in 2 sets as follows:
• Gradually increase resource requests from 10% of total

resources up to 100%.
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Fig. 4: Requests for Nodes with Equivalent Utility

• Continuously increase number of experimenters, beyond
the point of the 100% utilization.

For the first scenario of equivalent utility for all the nodes
shown in Figure 4, we assumed a testbed with 400 total
node resources with experimenter requests following a uniform
distribution between 2 and 10 nodes, which reflects our
experience with the case of the reservation requests of NITOS
experimenters. The utility of the overall system is calculated
based on equation (1). We can see in Figure 4a that as the
requests of the experimenters increase reaching 100% utiliza-
tion of the available resources, the TTC maintains the average
normalised experimenter utility close to 0.35 while FCFS
drops to 0.26. This is justified by the fact that an increased
number of resource requests leads to more opportunities of
mutual beneficial exchanges of resources, improving the utility
of the system by 33.4% compared to FCFS approach in the
case of 100% resource requests.

In our second set of simulations shown in Figure 4b, we
can see how the system behaves when there is a continu-
ously increasing number of experimenters leading to situations
where the available resources are less than the requested. In
this case, experimenters’ requests will be rejected when the
FCFS mechanism is in operation after all the resources have
been allocated. The behavior of the TTC will be different as it
collects all the preferences before deciding the final allocation
and in this scenario tries to serve all the experimenters leading
to less allocated nodes than the experimenters initially re-
quested. This means that all the experimenters will experience
the same amount of resource request rejections, leading to a
more fair final allocation. Indicatively, we can see that when
there are 100 experimenters trying to reserve resources, the
TTC algorithm manages to provide 81.9% better utility than
the FCFS algorithm.

B. Scenarios with Groups of Nodes with Weighted Utility

The above experiments apply when all the resources of
a testbed are of equal importance to all experimenters and

provide the same utility. However, this is far from accurate
when different resources provide different utility for the ex-
perimenters, as in the 2nd scenario where we assumed that
the resources are divided in 2 groups. The first one consists of
LTE base stations (eNBs), while the second contains the LTE
clients (UEs). The experimenters evaluate their preferences for
eNBs higher than their preferences for UEs with utility weight
0.7 compared to 0.3. For this scenario we assumed that there
are 40 eNBs and 400 UEs and each experimenter requests 1
eNB along with 10 UEs. The utility of the system is calculated
by equation (5) where the different weights are taken into
consideration for the overall utility.

Like in the 1st scenario we conducted 2 sets of simulations
where there is an increasing number of resource requests in
the 1st and an increasing number of experimenters in the 2nd.
In Figure 5a we can observe similar behavior with the first
scenario shown in Figure 4a with small differences in the total
utility numbers, due to the fact that there are 2 groups of
resources with different weights in the utility calculations. The
first group, which contains the available eNBs for reservation
is valued higher than the other group and since most of the
experimenters get their preferred eNB, the average utility of
the system is attained slightly higher compared to the previous
scenario and improved by 29.1% compared to FCFS.

In the second set of simulations shown in Figure 5b, we
can observe that the TTC algorithm continues to outperform
the FCFS and achieves 95% better utility when there are
100 experimenters in the testbed. In this set of simulations,
experimenters request a fixed amount of resources, which is
1 eNB and 10 UEs per experimenter. The TTC algorithm
begins to perform more efficiently than the FCFS after the
20th experimenter, increasing the difference of the average
system utility with the FCFS up to the maximum point of the
100 experimenters. Based on our findings, we can say that
FCFS can only reach high average utility when there is no
competition for reserving the same nodes as we notice for
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Fig. 5: Requests for Groups of Nodes with Weighted Utility

low percentage at requested resources in Figure 5a and for
lower number of experimenters in Figure 5b.

The values depicted in the graphs for the aforementioned
scenarios were the outcome of extensive simulation runs. More
specifically, every point on the graphs is an average of 1000
simulation runs, thus minimizing the effect of outliers and
providing more accurate results. The TTC algorithm provides
results instantaneously for most of the provided input (number
of experimenters/resources). A realistic scenario from our day
to day experience of testbed operation in NITOS testbed
includes 100 experimenters and 500 resources, for which
TTC can provide a stable allocation instantaneously. Even
if we increase the number of experimenters and resources
by an order of magnitude, which is 1000 experimenters and
5000 resources, the results can be obtained in less than 1
second. These performance results can be achieved by using
commercial off-the-shelf hardware like desktop PCs. Hence,
the TTC algorithm proves a feasible solution that can be easily
adopted by the management and resource allocation services
of the testbeds.

VI. CONCLUSION & FUTURE WORK

In this paper, we examined the problem of resource alloca-
tion in networking experimentation testbeds where resources
cannot be shared among the experimenters and a reservation
must be done prior to the provisioning of the resources. We
highlighted the fact that a small number of studies have
focused on the problem of efficient utilization of testbed
resources mainly employing auction mechanisms to overcome
the problem of resolving reservation conflicts for the same
resources. We underline the similarities of the problem with
that of the housing market and see the connections between
resources/nodes and houses, as well as between experimenters
and owners. We adopt the TTC algorithm which is proven
to provide a Pareto efficient solution in exchange markets of
indivisible goods without money. One of the key distinguishing

characteristics of this approach is the lack of need for a closed
economy and a virtual currency approach that introduces an
overhead to the experimenters. With the approach that we
present in this paper, the experimenters are only called to
declare their preferences regarding resource reservation. In
the performance evaluation we presented, the TTC algorithm
clearly outperforms the current FCFS scheme used in most of
the networking testbeds.

For future work, we plan to investigate scenarios where
experimenters are getting rewarded if they decide to return
reserved resources that for some reason are not utilized in their
experiments or they are not needed for the whole reservation
time period. This need comes from our experience of running
a networking testbed where experimenters usually over-reserve
resources in order to assess which ones they would use in the
end. This results in under-utilization of the testbed and hinders
other experimenters to use those over-reserved resources.
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