
Enabling ITS Real World Experimentation in NITOS
Future Internet facility

Nikos Makris, Thanasis Korakis, Dimitrios Katsaros and Leandros Tassiulas
Department of Electrical and Computer Engineering

University of Thessaly
Volos, Greece

Email: {nimakris, korakis, dkatsar, leandros}@uth.gr

Abstract—Inter-Vehicle Communication is expected to be
widely adopted during the next years by the car industry, enabling
Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication
targeting at safer commuting. Therefore, the research community
have been working towards providing a robust communication so-
lution that will interoperate with existing network infrastructure
and will provide an effective way of communicating using location
information. One of the proposed solutions is the GeoNetworking
protocol, standardized by ETSI, using location based addresses
and an IPv6 adaptation sublayer for communicating with the
Internet. Several implementations of the protocol exist currently,
however most of them are integrated in simulation environments,
thus ignoring several factors induced when experimenting under
real conditions. In this paper we present our own implementation
of an ETSI compliant GeoNetworking protocol and its integration
in the NITOS Future Internet facility that enables open and
remote access to experimenters on a 24/7 basis. This is the first
real implementation in an open wireless testbed, which offers
to the research community high diversity in the configuration
parameters of their ITS experiments. We further explain our
extensions that enable real world testing of our protocol imple-
mentation and we finally evaluate our solution in a real large
scale wireless setup.

I. INTRODUCTION

The fact that the number of vehicles is steadily increasing
over the past years has motivated the research community
towards designing and developing fertile ground for road
safety and Geo-localization applications. Interconnection and
communication of the building blocks of a Vehicular net-
work (VANET) have been investigated towards this goal, thus
providing several Vehicle to Vehicle (V2V) and Vehicle to
Infrastructure (V2I) communication protocols. Although ex-
isting network interconnection protocols seem to be sufficient
for communication, road safety applications need an approach
based on geographical location data. GeoNetworking protocol
is one of the protocols able to provide location based routing
of requests and has been defined and specified by the Car to
Car Communication Consortium (C2C-CC) [1].

GeoNetworking has been standardized by ETSI in the
standard TS 102 636-4-1 [2]. It is able to provide communi-
cation based on geographical location data, as well as transmit
information over the Internet by using an IPv6 adaptation
sublayer [3]. Although V2V communication is the goal, in
cases where the fleet has to be informed in geographical
locations that are beyond the coverage area of wireless com-
munication protocols, an Internet backbone connection has to

Fig. 1: The basic ITS networking stack

be employed. IPv6 with its extended addressing architecture
has been chosen for these cases of communication over the
Internet, with the vehicle node usually using a Road Side Unit
(RSU) as the communication gateway.

Although GeoNetworking is considered to play a major
role in future Inter-Vehicle Communications (IVC), we have
noticed a lack of an open experimental environment that a
researcher or an SME could use to develop ITS specific appli-
cations. Most of the work on this field is limited to simulation
environments, where factors existing under real environment
settings are ignored or emulated using network models that
only apply to a specific subset of use cases [4]. This fact
has been identified by the European Commission which has
launched several projects that establish network infrastruc-
ture widely available and promote experiment-driven research.
Experiment-driven research is another emerging trend, where
novel protocols and ideas are evaluated and redesigned un-
der real world settings. NITOS Future Internet facility [5],
is one major European testbed, initially aiming in wireless
networking research. NITOS has been a major component
of several projects under the Future Internet Research and
Experimentation (FIRE) initiative.

In this work we bundle these two puzzle pieces together;
using an implementation of the GeoNetworking protocol and
a highly modular architecture, we provide open access to
ITS researchers in the NITOS testbed. With the proposed
architecture, the experimenter is able to create and evaluate
under real world environment applications running on top
of the ITS stack (Figure 1). The experiments can utilize
heterogeneous network access technologies, such as Ethernet,978-1-4799-4937-3/14/$31.00 c©2014 IEEE

WiFi, WiMAX and LTE, thus proving the interoperability of
the ITS network stack.

The rest of the paper is organized as follows: In section
II we provide some background information on the current
efforts in ITS experimental research. In section III we describe
our implementation’s architecture. Details on the mobility
emulation environment that we created to test and evaluate
our platform are presented in section IV. Finally, in section V
we present some experimental results compared to an existing
open source solution.

II. RELATED WORK

As IVC has drawn a lot of attention from the research
community, several European funded projects have been trying
to standardize V2V and V2I communication in collaboration
with the car industry. Since the goal has been the creation of
a protocol able to offer address and routing of requests based
on geographical location data, several algorithms have been
proposed on this field, such as GPSR, GeoTORA, GeoGRID,
MORA and MOPR [6]. One of these projects, GeoNet project
[7], focused on cooperative ITS communications and tried
to bundle together useful pieces of the aforementioned algo-
rithms. Its outcomes were further enhanced and standardized
as the GeoNetworking protocol by C2C-CC.

Before the standardization of GeoNetworking, evaluation
of IVC protocols took place under simulation environments
using the aforementioned algorithms. Several additions to
widely adopted network simulators have been proposed that
enable the operation of the GeoNetworking protocol. For
instance, in [8] the authors propose a GeoNetworking protocol
layer implementation on the NCTUns simulation framework.
Similar to this, in [9] a highway mobility model for VANETS
is proposed, integrated in the ns-3 simulator. Using these
proposed models, the researchers are able to further enhance
their ITS specific simulations using parts of the ITS stack.

However, although the accuracy of the simulation solutions
has significantly improved throughout the last few years, real
world effects are usually left out of the simulation parameters
or are modeled using mathematical models. As an outcome,
simulation results are proven to be incomparable with results
received under real world settings, and especially when these
are conducted using wireless networks. In [4] the authors com-
pare results from NS2 and GloMoSim simulators with that of
those received under an emulation testbed. As they prove, the
simulation results were even not comparable with each other in
some specific scenarios. Similar results to these are presented
in [10] where a comparison among experiments conducted
in the most widely adopted simulators are described. The
incompatibility of the solutions presented by simulation results
is ought to the assumptions that they make. This applies best
in experiments conducted using wireless networks where the
external factors can be non-deterministic and can have a large
impact on the conducted experiment[11]. Therefore, the ITS
research on VANETs and their intercommunication conducted
under a simulation environmet may be highly questionable
on their results and their application under real environment
conditions.

As a result of these, the need of the experimental evaluation
of any new protocol and idea under real world settings is obvi-

ous. However, for the ITS specific research there is no similar
environment for benchmarking applications and services. This
happens due to the lack of publicly given platforms able to
be setup easily, even from the inexperienced users. To the
best of our knowledge, the only open source and publicly
available implementation compatible with the GeoNetworking
protocol is the CarGeo6 [12]. Its development sticks to the
delivered architecture of the GeoNet project, while the source
files of it are given publicly. CarGeo6 is also using the IPv6
adaptation sublayer, rendering several instances of it able to
intercommunicate through the Internet, as it is standardized in
[3].

However, the ITS stack is using different protocols at
each layer, each one with its own restrictions and limitations
towards meeting the requirements of vehicular applications.
Each layer (Figure 1) is using different mechanisms crucial
for the successful communication among the VANET com-
ponents. For instance, apart from the GeoNetworking core,
a separate transport protocol has to be employed to ensure
data transferring among applications running on top of the
stack. Separate position update modules have to be used in
order to ensure that position data received from the GPS
module attached on the ITS node keep the GeoNetworking
core constantly updated. Different protocols running on top of
the transport layer, by means of a facilities layer, should be able
to trigger the appropriate messages by sending predefined data
indications to the GeoNetworking core. However, CarGeo6 is
only provided without the support of any higher layers as it
focuses in providing network interoperability as the authors
state in [12].

In this work, we move a step beyond this work in ITS re-
search; we establish an application space ITS stack on a widely
used EU wireless testbed. We use our own implementation
in C++ language of the different ITS components and finally
evaluate it against the CarGeo6 open source implementation.
Since our goal is not to provide a better implementation than
the existing ones but an interoperable one with a full ITS stack
support, we conduct our experiments and indicatively measure
delays of multihop and singlehop delay in the NITOS testbed.

III. IMPLEMENTATION DETAILS

In this section we present some more details on our im-
plementation and its building blocks. The developed GeoNet-
working functionality is running as a user space application
daemon. In order to provide functional experimentation with
the GeoNetworking core we had to develop minimal versions
of other key component layers of the ITS protocol stack,
such as an appropriate Transport layer, a Facility layer and
a Management layer. The details for each layer and the archi-
tecture of communication among our developed applications
are described in the next subsections.

A. Communication Between Layers

Towards realizing our GeoNetworking implementation, we
had to come up with a communication solution among the
different sub-applications that comprise our solution. Towards
this goal, we employed the standard UNIX socket API. The
different sub-applications needed to run on our platform for
real world experiments are

Fig. 2: The architecture of our GeoNetworking protocol im-
plementation

• the basic GeoNetworking core,

• the Basic Transport Protocol (BTP) as a means of a
Transport layer protocol,

• a minimal facility layer used to generate traffic,

• a minimal implementation of the ITS management
layer.

The communication among these sublayers is done through
network sockets, communicating over the ITS station’s local-
host interface. The packets are exchanged through the UDP
sockets and involve the information described in the ETSI
Annex of GeoNetworking.

Apart from these implementations, the selection of a MAC
protocol standardized by ETSI for ITS communication is of
paramount importance. ITSG5 and its variations of ITSG5A,
ITSG5B and ITSG5C rely on a distributed wireless proto-
col, supporting adhoc communication in the 5.9GHz band,
exploiting the IEEE 802.11p protocol. For these reasons,
we use a commercial IEEE 802.11 protocol compliant card,
compatible with the ath5k Open Source driver that supports
packet injection of already formed packets through the pcap
library.

To sum up, the communication of the different subparts
of the ITS stack is described in Figure 2. Basic Transport
protocol is implemented inside the GeoNetworking core, and
communicates via UDP sockets with the upper facility layer.
GeoNetworking core communicates likewise with the manage-
ment layer and using inject functions with the IEEE 802.11
and 802.3 link layer. In the next subsections we discuss about
our implementations on each layer, the currently supported
operations and the issues we had to resolve in order to come
up with a functional solution.

B. The GeoNetworking Layer

Our implementation realizes the ETSI TS 102 636-4-1 for
Geographical addressing and forwarding for point-to-point and
point-to-multipoint communications, providing media indepen-
dent functionality. The address format specified in the standard

is using a 64-bit representation, comprised of a bit for distin-
guishing whether the address is set automatically or manualy,
a 4-bit field representing the ITS station type (roadside unit or
a vehicle), a 1-bit indicator of whether the station is a private
or public transport vehicle, a 10-bit field indicating the country
code and finally a 48-bit field with the MAC address of the
station. Since our implementation targets at giving open access
to the experimenters to a working GeoNetworking protocol,
we use a configuration file as an input to the GeoNetworking
daemon. As it is specified in the standard, a GeoNetworking
implementation should be configured through a Management
Information Base (MIB). We consider that provisioning a
MIB is beyond our initial goals, so we expose some of the
MIB parameters through an external configuration file. All
these aforementioned parameters can be setup through the
configuration file provided to the experimenter.

Moreover, through the configuration file the experimenters
can setup the communication parameters with the facility
and management layer, in case they want to use their own
implementation, and the primary interface that will be used
for communication. It is worth to mention that we currently
support only Ethernet and WiFi interfaces, but we intend to
extend it to using WiMAX and LTE interfaces.

The standard specifies six different types of packets;

1) Beacons
2) Single Hop Broadcast (SHB)
3) Topologically Scoped Broadcast (TSB)
4) GeoBroadcast/GeoAnycast
5) GeoUnicast
6) Location Service packets

Our implementation is able to support all GeoNetworking
type of packets, except for the creation of the Location Service
packets. These type of packets are triggered when no entry
of the location of a specified host is found in the Location
Table (LocT). Beacon packets are exchanged when a specific
timer expires, which is reset each time that the GeoNetworking
enabled station sends a packet of a different type. This feature
explicitly defines that Beacon packets are sent only when
no other communication involving the specific station takes
place, so as for it to advertise its location. The rest type of
packets are triggered when receiving an appropriate indication
by the facility layer. TSB messages are used for broadcasting
messages to nodes located more than one hop away. GeoBroad-
cast messages are used in the case of broadcasting/anycasting
messages inside a geographical region, and are used mainly for
road safety and event information applications implemented in
the application layer. Finally, GeoUnicast messages are used
for transmitting messages to a specific host whose location
information is already known.

The implementation of the LocT is done using a hash table
with a simple hash function, relying on the MAC address of the
received packet. Since the hash function is a rather simple one,
we have predicted and developed a hash collision mechanism
using separate chaining of the collided entries using a linked
list. The hash function is using as input the MAC address
field of each received packet (as it is extracted from the
GeoNetworking address) to retrieve each LocT entry. This is a
notable difference compared to the CarGeo6 implementation,

which is using linked lists that can have a large scanning
overhead in dense networks.

Our daemon is written in a way that can scale in terms of
heavy node network congestion. It is multi-threaded, using dif-
ferent threads for the process of beaconing, receiving packets
from the network, receiving packet requests from the facility
layer, receiving management messages from the management
layer, holding the location table and finally for invalidating
expired entries in the LocT. The threads responsible for re-
ceiving messages are subsequently forked in the case that a
transmission of a packet is required, either when the station is
a transmitter and the network packet has been received from
a higher layer or when the station is a forwarder of a packet
already received from the Link Layer.

Furthermore, since the GeoNetworking protocol is built so
as to maximize the spreading of information in a geographical
area, each packet might be retransmitted several times within
it. Typical examples are the TSB and GeoBroadcast packets,
where each receiving host will retransmit the packet if either
the hop count is greater than zero or the host is inside a
defined geographical area. For this reason, a duplicate packet
detection mechanism has to be used. The packets which
are meant to be retransmitted bear a sequence number (SN)
incremented by one each time that such a packet is triggered.
By retaining an entry in the LocT with the last SN received
from each neighbour, each host manages to keep track of
the packets received per host. Using this kind of mechanism,
GeoNetworking core is able to detect duplicate packets and
discard them without any further processing.

In order to accomplish true communication using location
information, we used the definitions of a geographical area as
defined in the ETSI EN 302 931 standard [13]. The standard
defines three different types of geographical areas; circular,
rectangular and elliptical. Each one of the areas is defined
using two points and the azimuth angle of the longest axis.
The GeoNetworking protocol is using this information in the
cases of GeoBroadcast and GeoAnycast messages only and
should totally be agnostic to these parameters; the protocol
receives these parameters by means of a data request received
from the facility layer.

C. Basic Transport Layer

The proper selection of a Transport layer protocol is crucial
for the successful communication of multiple running instances
of the GeoNetworking daemon. In ETSI TS 102 636-5-1
standard [14], the Basic Transport Protocol (BTP) is described
for connectionless transport service among ITS stations. BTP
is responsible for communicating the requests to/from the
facilities and the GeoNetworking layers.

In the standard two variations of the protocol are described;
BTP-A and BTP-B. Depending on the facilities layer protocol
used, one of the two variations of the protocol is chosen. Its
advantage is that it is a lightweight transport service protocol
using very simple headers. In fact, it only uses a 4-byte long
header for destination port and source port or destination port
information indications. Due to its simplicity we decided in
our implementation to integrate it with our GeoNetworking
daemon, thus reducing the overhead of communication over a
single node’s localhost interface. When the daemon receives a

Fig. 3: The Mikrotik R52 Card for 5.9 GHz band operation

request from the upper layers, BTP is used to encapsulate the
packet based on the information indicated in the request and
subsequently delivers the packet to the GeoNetworking layer
for further processing.

D. Facility Layer

In order to create some traffic over our test environment,
we had to create a traffic generation scheme. As in our
implementation we have been sticking to the GeoNetworking
standard, which describes the overall architecture as a modular
system, we had to implement a minimal upper facility layer
that would generate the requests. It is worth to mention that in
our setup the facility layer is given as an Open Source solution
that enables the experimenter to configure it appropriately in
order to suit his/her experiments. The two different protocols
operating in the facility layer, which are standardized by ETSI,
are the Cooperative Awareness Messages (CAM) [15] and the
Decentralized Environmental Notification Messages (DENM)
[16].

Each facility layer protocol triggers a different type of
messages in the Transport and GeoNetworking layer; CAMs
encapsulate into BTP-A and SHB or TSB packets while
the DENMs into BTP-B and GeoBroadcast or GeoAnycast
messages. This choice has been made by ETSI in order to
focus on road hazard safety messages that get transmitted in
a single geographical region usually in the case of a traffic
accident.

E. Link Layer

In order for our implementations to stick to the ETSI stan-
dards for PHY communication, we had to adopt a solution that
is close to the ITSG5 description. For this reason, we employed
the Microtic R52 miniPCI card on the testbed nodes (Figure
3), able to transmit in the 5.9GHz frequency and configurable
in adhoc mode. To the best of our knowledge, this setup is
the closest one to the IEEE 802.11p implementation. These
mini-pci cards use an Atheros based chipset and therefore
are compatible with the existing Open Source driver ath5k.
A feature of this driver is that it supports packet injection,
which can override the standard driver process and inject an
already formed packet directly onto the card. In order to be
able to inject packets directly to the driver, the use of the pcap
library is required.

The exact reverse process is taking place in the case that
a packet is received from the network. The pcap API gives

access to the packets received from the network by duplicating
them from the network buffer into our application, before
being processed by the MAC driver. So our GeoNetworking
application has a thin layer responsible for stripping off the
MAC headers and delivering the packet to the GeoNetworking
core. Apparently this approach is not the most effective one,
since any packets which are not destined to the specified host
are processed twice, initially by the default MAC layer driver
and one more time in our daemon before getting discarded.
However this is a trade-off that we have in order to facilitate
“direct” access over the network. It should also be noted
that the GeoNetworking type of packets not processed by our
daemon get discarded by the MAC layer of the host before
delivering them to the normal IP layer.

F. Management Layer

A final application that we had to develop in order to have
full functionality of our GeoNetworking daemon is a minimal
implementation of an ITS Management layer. The management
layer is of paramount importance in the GeoNetworking proto-
col specification, as it is responsible for informing any position
updates to the network layer, updating the GeoNetworking
address in case that a duplicate is found and informing of any
time changes. Our management layer is using the communica-
tion prototypes specified by ETSI for communicating with the
core daemon and receiving updates from it. In the following
section we give some more information on its necessity and
the role it plays in the overall mobility emulation framework.

G. Logging Support

In order to provide the experimenter with the appropriate
feedback on the ITS experiment, separate logging mechanisms
have been developed running at each ITS stack layer. The
GeoNetworking core is monitoring and logging every incom-
ing packet, and provides feedback on the timestamp with
microsecond accuracy on the received packet and the position
information of the host it has sent it. In some cases that the
packet is a forwarded one, and thus the source of the packet
is different than the sender, this information is logged as well.
Logging this kind of information has a low cost overhead,
since the GeoNetworking core inspects these packet fields
for keeping the location information on the receiving node
updated. Moreover, the facility layer logs in separate log files
the packets sent to and received from the GeoNetworking core.
Finally, the management layer is keeping information on the
position update messages sent to the core system.

IV. MOBILITY EMULATION ENVIRONMENT

As we have already described, the evaluation of our
implementations took place in the NITOS Future Internet
facility. NITOS is an outdoor deployed, large-scale wireless
testbed, currently consisting of 50 operational WiFi nodes in
the premises of a University of Thessaly campus building
(Figure 4). The testbed is using the state-of-the-art control and
management framework for testbeds, namely OMF [17], for
conducting distributed large scale experiments easily. OML,
OMF’s accompanying library is used for collecting experiment
specific measurements in a database.

Fig. 4: The NITOS wireless testbed

Since the nodes comprising the testbed are static, we had
to create an environment that would emulate the mobility at
least at the GeoNetworking layer.

To this aim, we employed the gpsfake and the gpsd
applications. The former is used for parsing a file with NMEA
sentences and feeding this data directly to the latter. Gpsd is
the state-of-the-art application in UNIX systems for parsing
data from a GPS device. Any application can query a running
gpsd instance for position information which is returned to it
in a JSON format.

Our Management layer is using this exact procedure;
queries the gpsd daemon, parses the JSON file and creates
the appropriate position update message for the GeoNetwork-
ing daemon. By using this approach, we have managed to
emulate mobility in the Network layer of the NITOS nodes.
The validity of our approach has been verified through our
experimental framework where the nodes inside a geographical
area only retransmit the GeoBroadcast packets in the case
that they are all located inside it. However, action has to be
taken in order to have a fully working mobility setup in the
Link layer as well, so as the nodes defined under different
geographical areas are outside each other’s coverage area. We
are able to currently support this action manually by carefully
selecting the nodes that comprise our experiment and change
their transmission power. Using the ath5k driver we are able
to configure the transmission power of the WiFi card with a
value between 0-27dBm. Although this process takes place
by issuing the appropriate commands, we are currently in the
process of extending this kind of support by using UNIX
debugfs filesystem. Directly from the management layer we
will inform the wireless driver about the node’s position to
appropriately adjust its transmission power, thus enhancing our
framework with a cross-layer approach.

V. EVALUATION RESULTS

In this section we describe our experimental results from
bundling together our applications. Our evaluation takes place
in two parts. Initially we setup the nodes in a wireless adhoc
network and set their wireless parameters in a way that we
create a three hop wireless network and measure the end-to-end

Fig. 5: Delay measurement for intensive traffic

delay. As a second phase of our evaluation, we perform some
stress tests on our application in order to check its performance
under heavy traffic, compared to the CarGeo6 application.

A. Multiple Hop end-to-end delay

This performance evaluation is provided as a proof of con-
cept that our implementation of the protocol is fully functional.
For this reason we employ four NITOS nodes. However, even
if we setup the transmission power to 0dBm, some of the nodes
are still able to communicate with each other. Therefore, we
had to use the dummynet application, able to perform layer 2
filtering on the nodes based on a list of given MAC addresses.

By applying the aforementioned rules, we conduct our
experiments using four nodes. Since no traffic generator is
currently compatible with the GeoNetworking protocol, we
had to develop our own. By using the facilities layer we trigger
CAM packet requests every 2 seconds, while the beacons are
configured to be transmitted every 3 seconds. The facility
layer requests prompt GeoNetworking to use a 3-hop TSB
message. The facility application is started after all nodes
have exchanged their beacon packets and have each other’s
neighbour in their LocT. The experiment’s duration is 60
seconds and takes place over IEEE 802.11a using channel 40,
which is RF isolated.

We measure the timestamps of consecutive CAM messages
on the receiving node. As we expected to see, the interarrival
times of the consecutive CAM messages is steady and almost
equal to the 2 seconds that each CAM request is generated.
However in order to measure the Round Trip Time (RTT)
achieved using our implementation we had to further tailor
the facility layer of the receiving node to trigger back a
reply. Comparing to the IP layer, when using the exact same
setup, we measured average RTT values of 3.1 msecs with
our application layer measurement tool, utilizing UDP sockets.
Our implementation achieves a little bit higher RTT values of
around 5.2 msecs for the exact same setup.

This delay is considered to be fair and tolerable when
comparing the two protocols; Our implementation runs as an
application space daemon and has to go through the LocT
entries for each received packet, form a new packet and deliver
it to the facility layer, update the headers and then inject it
again on the network. These operations clearly introduce more

delay. However, as we have already mentioned, this is our first
step as a proof of concept that our application is functional.

B. One-Hop Delay Measurement

In this subsection we present our experimental results with
regard to an existing open source solution of the GeoNetwork-
ing standard, namely CarGeo6. CarGeo6 is an implementation
of not only the GeoNetworking protocol, but bundles together
other ITS specific ETSI standards, such as the adaptation
sublayer for IPv6. Nonetheless, it currently cannot provide
a full ITS stack support as it does not have any higher
layer functionality. The source of this implementation is given
publicly available. Therefore, in order to directly compare our
efforts with it, we decided to make CarGeo6 able to cooperate
with our higher layer applications.

TABLE I: Basic Setup of NITLAB nodes

CPU / Memory 2.26 GHz Intel Core 2 Duo P8400 / 2048 MB RAM
Operating system Ubuntu 11.04 / kernel ver 2.6.38-16

Wireless cards Atheros 802.11a/b/g & Atheros 802.11a/b/g/n (MIMO)
Wireless driver ath5k

Ethernet interfaces 2 NICs with 1Gbps connection

For the evaluation of our implementation we set up the
CarGeo6 and our applications between two nodes of the
NITOS wireless testbed. Although the nodes feature multiple
wireless interfaces, we choose to use the node’s experimental
Ethernet interfaces as both the ingress and outgress interfaces
of the nodes. We choose to use this kind of connectivity since
NITOS is an outdoor testbed with high external interference
that could prove to be detrimental for conducting this kind
of benchmarking measurement experiments. We decide to
conduct delay measurement experiments between the two
protocols in order to prove that the two implementations are
close to each other. Delay measurements from a higher layer
and using CSMA/CD as a medium access protocol will provide
us insights on how the applications are built and how they
respond to heavy network traffic.

For this purpose, we use our implementation of the facility
layer and configure it to generate CAM messages with high
intensity. This is done by sending consecutive requests without
any sleep interval. In order for it to communicate with the
CarGeo6 implementation, we had to further add the same
hooks in the code that make it communicate with our facility
layer; this is basically a UDP server listening for higher
layer requests and a UDP client for delivering received CAM
messages to the facility layer.

We finally setup the facility layer to generate massively
CAM requests delivered to the GeoNetworking core. By using
the OML library (OMF Measurement Library) we collected
timestamps of the reception time of consecutive data indi-
cations in the facility layer. Using two NITOS nodes, we
measured average delays of approximately 4.5-4.8 msecs for
our implementation and 2.6-2.8 msecs for the CarGeo6 appli-
cation (Figure 5). These delays are measured per packet for
an experiment lasting for 60 seconds. Measurements gathered
within a second are aggregated and averaged. Since this kind
of experiment can be dependent on the hardware specifications
of the node, we provide this information in Table I.

Fig. 6: Delay measurement for traffic generated per 10, 100
and 500 msecs

Although the differences in time are observable, the gen-
eration of measurements is relying on the way the two ap-
plications are developed; Our implementation uses the pcap
library for injecting the traffic on the network and registers
a callback function triggered by every incoming packet, while
the CarGeo6 opens raw sockets over the network interface. Our
approach is dependent on the implementation of the library and
how it gets access over the network which can significantly
decrease performance. On the other hand, raw sockets give
the flexibility to handle each incoming packet directly from
the network by assigning a thread to continuously listen to it.

All in all, although the first impression is that our ap-
plication is outrun by CarGeo6, this performance overhead
is created by the access mechanism that we use over the
network and in the cases of heavy traffic. We repeat the same
experiment for different time intervals of traffic generation and
measure our results with a microsecond accuracy.

As we observe in Figure 6, for traffic generated per 10, 100
and 500 msecs, the delays for each implementation converge
together. When conducting experiments with generating traffic
at a shorter interval than 10 msecs, we observed that for this
setup of nodes, our implementation was able to efficiently
deliver packets with the same rate they were generated for an
application rate of up to 2 msecs. For higher rates, our solution
was unstable, started dropping packets and was inconsistent in
the delivery rate.

VI. CONCLUSION

In this paper we presented our ITS stack solution for
experimenting under real world settings using the NITOS
wireless testbed. We described the communication architecture
of the different ITS stack components that we implemented
and how they intercommunicate in order to provide GeoNet-
working support to the testbed nodes. We finally evaluated our
implementation in a real testbed setup and benchmarked our
implementation with an open source solution. The results we
obtained are very encouraging and we believe that we will be
able to further enhance our solution by altering the library we
are using for medium access.

Our future work will be on enhancing our system and
performing field tests by mounting the NITOS nodes in cars.
Another enhancement that we will work towards to will be

the implementation of the IPv6 adaptation sublayer, that will
enable the protocol’s interoperability with existing network
tools. This enhancement will give us the opportunity to fur-
ther benchmark our solution by using widely adopted traffic
generators, such as Iperf.

REFERENCES

[1] Car to Car Consortium, http://www.car-to-car.org/.
[2] ”ETSI TS 102 636-4-1: ”Intelligent Transport Systems (ITS); Ve-

hicular communications; GeoNetworking; Part 4: Geographical ad-
dressing and forwarding for point-to-point and point-to-multipoint
communications; Sub-part 1: Media-Independent Functionality ”
V1.1.1 (2011-06)”, http://www.etsi.org/deliver/etsi ts/102600 102699/
1026360401/01.01.01 60/ts 1026360401v010101p.pdf.

[3] ”ETSI TS 102 636-6-1: ”Intelligent Transport Systems (ITS); Vehicular
communications; GeoNetworking; Part 6: Internet Integration; Sub-
part 1: Transmission of IPv6 Packets over GeoNetworking Protocols ”
V1.1.1 (2011-03)”, http://www.etsi.org/deliver/etsi ts/102600 102699/
1026360601/01.01.01 60/ts 1026360601v010101p.pdf.

[4] Furqan Haq and Thomas Kunz. Simulation vs. emulation: Evaluating
mobile ad hoc network routing protocols.

[5] NITOS: Network Implementation Testbed Laboratory using Open
Source platforms, http://nitlab.inf.uth.gr/NITlab.

[6] Z. Cihan Taysi and A. Gkhan Yavuz. Routing protocols for geonet: A
survey. IEEE Transactions on Intelligent Transportation Systems, 13,
2012.

[7] GeoNet project, http://www.geonet-project.eu.
[8] Ziya Taysi and Ali Yavuz. Etsi compliant geonetworking protocol layer

implementation for ivc simulations. Human-centric Computing and
Information Sciences, 3, 2013.

[9] Hadi Arbabi and Michele C. Weigle. Highway mobility and vehicular
ad-hoc networks in ns-3. In Proceedings of the Winter Simulation
Conference, WSC ’10, 2010.

[10] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. Manet simu-
lation studies: The incredibles. SIGMOBILE Mob. Comput. Commun.
Rev., 9(4), oct 2005.

[11] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan,
and Chip Elliott. Experimental evaluation of wireless simulation
assumptions. In Proceedings of the 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWiM ’04, 2004.

[12] T. Toukabri, M. Tsukada, T. Ernst, and L. Bettaieb. Experimental
evaluation of an open source implementation of IPv6 GeoNetworking
in VANETs. 2011.

[13] ”ETSI EN 302 931: ”Intelligent Transport Systems (ITS); Vehicular
communications; Geographical Area Definition ” V1.0.0 (2010-12)
” http://www.etsi.org/deliver/etsi en/302900 302999/302931/01.00.00
20/en 302931v010000c.pdf.

[14] ”ETSI TS 102 636-5-1: ”Intelligent Transport Systems (ITS);
Vehicular communications; Basic Set of Applications; Part 5:
Transport Protocols; Sub-part 1: Basic Transport Protocol ”
V1.1.1 (2011-02)” http://www.etsi.org/deliver/etsi ts/102600 102699/
1026360501/01.01.01 60/ts 1026360501v010101p.pdf.

[15] ”ETSI TS 102 637-3: ”Intelligent Transport Systems (ITS); Vehicular
communications; Basic Set of Applications; Part 2: Specifications
of Cooperative Awareness Basic Service ” V1.2.1 (2011-03)”
http://www.etsi.org/deliver/etsi ts/102600 102699/10263702/01.02.01
60/ts 10263702v010201p.pdf.

[16] ”ETSI TS 102 637-3: ”Intelligent Transport Systems (ITS); Vehic-
ular communications; Basic Set of Applications; Part 3: Specifica-
tions of Decentralized Environmental Notification Basic Service ”
V1.1.1 (2010-09)”, http://www.etsi.org/deliver/etsi ts/102600 102699/
10263703/01.01.01 60/ts 10263703v010101p.pdf.

[17] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. OMF: a control and management framework for networking
testbeds. ACM SIGOPS, 2010.

