INTRODUCTION

Aim: Maximize throughput while achieving network stability.
Goal: Select schedules in the Diamond Relay Network, towards maximizing the total network’s throughput.
Method: Rely on optimization theory tools and Lyapunov drift to obtain optimal schedules. A network controller a(t), chooses the optimal between two feasible scheduling activation sets.
Implementation: Per packet-level configuration using Click Modular Router and Ath9k driver.
Access Method: A TDMA framing over WiFi.

SYSTEM SETUP

✓ 1 Source, 2 Relays, 1 Destination.
✓ Each node maintains a backlog data queue Q(t).
✓ Channel States: S(t), Service Rates: μ(t).
✓ Lyapunov function: \(L(Q(t)) = \sum Q(r)^2 \)
✓ Drift Expression: \(\Delta(t) = E[L(Q(t+1)) - L(Q(t))] \)
✓ Slotted time, TDMA frame structure.
✓ T1 intervals for gathering Network State Information, T2 for reporting schedules and T3 for actual transmission.

SOLUTION APPROACH

Minimize a bound on the drift expression with respect to a(t)

MAX WEIGHT RULE

ALGORITHM

✓ T1 interval: Source Node gathers Network State Information from its neighbors.
✓ T2 interval: Source takes a scheduling decision.

<table>
<thead>
<tr>
<th>Access Method:</th>
<th>A TDMA framing over WiFi.</th>
<th>Red lines denote the activation of two feasible scheduling sets by controller a(t).</th>
</tr>
</thead>
</table>

IMPLEMENTATION ISSUES

✓ Operating in a single frequency with CSMA prevents us from enabling parallel transmissions i.e. S→R1 and R2→D without collisions.
✓ Solution: Use of two different channels operating in each hop, in order to enable independent schedules.
✓ Scheduling decisions are taken in the IP layer rather than the MAC layer, since gathering and handling control data is more flexible with Click Modular Router.

Apostolos Apostolaras, Kostas Choumas, Ilias Syrigos, Giannis Kazdaridis, Thanasis Korakis, Iordanis Koutsopoulos, Antonios Argyriou, and Leandros Tassiulas