
Enabling Multi-Domain Orchestration using
Open Source MANO, OpenStack and OpenDaylight

Panagiotis Karamichailidis, Kostas Choumas and Thanasis Korakis
Dept. of ECE, University of Thessaly, Volos, Greece

Email: karamiha, kohoumas, korakis@uth.gr

Abstract—In recent years, the rise of Network Function
Virtualization (NFV) makes the Network Service (NS) deploy-
ment much agile and flexible. The proprietary and custom-
made hardware is replaced by a virtual and software-based
infrastructure, that is easily exploited in a common way for the
NS deployment. One of the most challenging problems in this
environment is deploying and organizing in a large-scale and
multi-domain infrastructure, which contains geographically dis-
tributed but interconnected data-centers. The proposed solution
focuses on the extra networking operations required in a NFV
infrastructure, managed by Open Source MANO, OpenStack and
OpenDaylight. We develop software proxies that collaborate with
the aforementioned tools and enhance their functionality. Finally,
we implement and evaluate the proposed architecture, using the
NITOS experimentation testbed.

I. INTRODUCTION

As virtualization dominates in every aspect of networking
and computing, Network Services (NSs) could not be unaf-
fected by this. For example, the Evolved Packet Core (EPC)
of LTE is a NS that previously was exclusively supported
by proprietary and hardware implemented Network Functions
(NFs) and now is not. The proliferation of Network Functions
Virtualization (NFV) enables the software implementation of
these NFs, that is decoupled from the utilized computation,
storage and network resources. In this way, NFV exposes
a new set of entities, named Virtualized NFs (VNFs) and
NFV Infrastructure (NFVI). The latter entity includes all the
resources used for the VNF deployment, management and
execution.

According to the ETSI Standardization group, the NFV
Management and Orchestration (NFV-MANO) [1] is a chal-
lenging task that requires the synergy of several functional
blocks, organized in an architectural framework and collab-
orating through specified reference points, as it is depicted
in Figure 1. Except for the VNF Manager (VNFM), that
is in charge of the VNF lifecycle, the other two functional
blocks of our interest are the NFV Orchestrator (NFVO) and
the Virtualized Infrastructure Manager (VIM). The NFVO has
two main functions, the NS Orchestration (NSO) and the
Resource Orchestration (RO), which implement the lifecycle
management of the NSs and the orchestration of the NFVI
resources across multiple VIMs respectively. The VIM is
responsible for controlling and managing the NFVI resources

NFV-MANO

VIM/WIM

NFVO
(NSO & RO)

VNFM

NFVI

VNF
VNF

Nf-Vi

Ve-Vnfm

Or-ViVNF

SDN
Con/ler

VIM/WIM

SDN
Con/ler

VIM/WIM

SDN
Con/ler

NS

Yellow
Domain

Orange
domain

Red
domain

Computing
Hardware

Storage
Hardware

Network
Hardware

Virtual
Computing

Virtual
Storage

Virtual
Network

Fig. 1: NFV-MANO

within a single domain(1), leveraging on hypervisors and SDN
controllers for the control of the computation/storage and
network resources respectively. There are also specialized
VIMs, such as the WAN Infrastructure Manager (WIM) that
controls only network resources. In this paper, we focus on
network and compute domains (or data-centers), controlled
by WIMs and VIMs respectively, and we investigate the role
of SDN in their operation. The interaction and functionality
of the SDN controller within the NFV-MANO architecture is
not clearly defined, even in the report on the SDN usage in
the NFV-MANO [2], since the SDN controller could either
be part of the VIM or the NFVI, among other options. This
paper sheds some light on the functionalities that could be
offered by the SDN controller, either as a part of the VIM or
constituting the WIM, especially for enabling the multi-domain
orchestration.

For our deployment, we exploit and extend the state-of-the-
art open-source software tools, namely Open Source MANO
(OSM) [3], OpenStack [4], [5] and OpenDaylight [6], [7],
which are for the NFVO/VNFM, the VIM and the SDN control
respectively. This triangle is one of the most widely-used
options for implementing the NFV-MANO, and from now on
is denoted as Open3. Although Open3 enables a remarkable
set of operations, it still does not support multi-domain NS
deployment. We present a solution that enables the VNF
deployment of a NS over multiple compute domains, as well
as their interconnection through a network domain, relying

(1)A domain could be either administrative, which exists within a single
organization/service provider, or technology oriented, based on the type of
technology in scope.978-1-7281-1434-7/19/$31.00 c© 2019 IEEE

on the Open3 tools and our custom-made and open-source
software. Our software leverages on the functionalities offered
by the OpenDaylight SDN controller. Last but not least, we
evaluate our implementation and we showcase the results of
our experimentation in the NITOS testbed [8].

The remainder of this paper is organized as follows. In
Section II, we briefly summarize the capabilities of Open3

and the most relevant work. In Section III, we explain the
challenges of the multi-domain orchestration and our solution
using more SDN. In Section IV, we present an evaluation of
our solution, obtained via testbed experimentation. Section V
concludes the paper.

II. RELATED WORK

The most representative implementation of the NFV-MANO
is the Open Source MANO (OSM), supported by ETSI. The
OSM community works on being aligned with the evolution
of the ETSI NFV specifications, while these specifications are
updated according to the feedback coming from the use of
OSM. Although OSM has its own implementation of the VIM,
named as OpenVIM, OpenStack is more stable, well-known
and used by many projects. OpenDaylight is similarly one of
the state-of-the-art SDN controllers, that has already developed
the required interfaces and plugins for synergy with OSM and
OpenStack.

At the moment of writing this paper, the most updated and
stable versions of OSM (Release FOUR), OpenStack (Queens)
and OpenDaylight (Nitrogen-0.7.2) enable only the single-
domain NS deployment. Although OSM can interact with
multiple VIMs in parallel, it uses only one VIM each time
a new NS is requested, which has to be declared on the NS
request. Thus, OSM cannot use VNFs offered by different
VIMs for multi-domain NS deployment, and of course WIMs
do not exist in its ecosystem. Moreover, even in the single-
domain NS deployment, OpenStack is able to control and man-
age only the physical machines (computing/storage hardware)
hosting the VNFs of the deployed NS, and not the network
hardware connecting these machines. OpenDaylight is only
and optionally used for the configuration of the Open virtual
Switches (OvS) existing in the host machines (or compute
nodes).

SDN-Assist [9] is an extra plugin offered by OSM, that can
be used for the single-domain NS deployment. It is in charge
of connecting the VNFs located in different compute nodes, if
and only if the compute nodes use physical Network Interface
Cards (NICs) with Peripheral Component Interconnect ex-
press (PCIe) pass-through capabilities. These NICs exploit the
Single-Root Input/Output Virtualization (SR-IOV) functional-
ity to appear to be multiple separated physical devices, each
of them mapped to and used by a single VNF. Although SR-
IOV enables higher performance, it is not yet compatible with
the majority of the utilized software (hypervisors) or hardware
(NICs) components. The majority of the existing deployments
depend on compute nodes with non-supporting SR-IOV NICs,
while the VNFs use virtual NICs (vNICs) connected to virtual
bridges (operated by OvS) residing on top of the physical

NFVI

OpenStack
Control node

management
tenant/project

Compute
node

Compute
node

guest
provider

Fig. 2: OpenStack networks

NICs, as it is depicted in Figure 3(a). Moreover, SDN-Assist
cannot not be used for multi-domain NS deployment, as the
one depicted in Figure 3(b).

There are also some works proposing solutions for multi-
domain NS deployment. The main disadvantage of these
approaches is their lack of support for VNF interconnection
inside the domains, since they focus only on the WIM imple-
mentation and not the SDN controller needed as part of each
VIM [10], [11], [12]. Moreover, they use their own proprietary
software for the orchestration (FROGv4, T-NOVA and TeNOR
respectively), instead of the widely-used and well-tested OSM.
5GEx [13] is one of the most well known and successful
projects for enabling cross-domain orchestration of services
over multiple administrations or over multi-domain single
administrations, however, it relies on a proprietary multi-
domain orchestrator. To the best of our knowledge, this is the
first paper extending OSM for multi-domain orchestration.

III. EXTENDING Open3 NETWORKING

We present Open3++, which extends the networking func-
tionality of Open3 by enabling the interconnection of VNFs
belonging to the same NS in more scenarios, either if they
are collocated inside a single domain or spread to multiple
domains.

Before proceeding, it will be helpful to clarify the termi-
nology and the classification of the networks followed by
OpenStack, since our software extending Open3 to Open3++
is mainly handling these networks with use of OpenDaylight.
In a single compute domain managed by OpenStack, the
VNF interconnection is built either through tunnels over the
OpenStack management network, which are named tenant or
project networks, or using overlay networks on top of the
OpenStack guest network, which are called provider networks.
Figure 2 depicts these networks. Our focus is on the latter
case, since the guest network can be physically connected to
other network domains and the provider networks may be used
for interconnecting VNFs of different compute domains. In
Open3, the provider networks exist “out there” and OpenStack
simply interfaces them. But in Open3++, they are deployed
on demand by exploiting the SDN-LAN and SDN-WAN con-
trollers with use of our extensions. The following sections give
more details on the SDN-LAN and SDN-WAN controllers, as
well as their usage for the creation of flat or vlan provider

NFVO

NFVI

hosthost
VIM

VNF 1
VNF 3

SDN
LAN

SDN
OvS

Network
Hardware

NICNIC

NS
VNF1 VNF2 VNF3

vlan

VNF 2
RO

OvS
vNIC

OvS
vNIC

NSO

(a) Single-domain NS deployment.

VNF 1

NFVI

VIM
SDN
LAN

SDN
OVS

WIM
(SDN-WAN)

VIM
host

Network
Hardware

host

SDN
LAN

SDN
OvS

Network
Hardware

Network
Hardware

VNF 3

NFVO
NS

VNF1 VNF2 VNF3
vlan

VNF 2

RO

OvS OvS

NSO

(b) Multi-domain NS deployment.

Fig. 3: Interactions between the functional blocks for the single/multi-domain NS deployment.

loop
[for each
extra
provider]

[for each
missing
provider]

SDN
OvS

SDN
LAN

SDN
proxy

GET
neutron:neutron/networks

list of networks

POST vtn-bridge:remove-vbridge

POST vtn-bridge:update-vbridge

POST vtn-vlan-map:add-vlan-map

GET vtn-bridge:list-vbridges

list of vBridges

loop

loop

[every
period]

(a) Messages from/to the SDN-proxy

POST v2.0/networks

POST v2.0/ports

POST v2.0/networks

POST v2.0/ports

…

POST vtn-vlan-map:add-vlan-map
POST vtn-bridge:update-vbridge

POST
v2.0/networks

proxyRO VIM
WIM
VIM

loop

…

POST v2.0/portsloop

alt

[fo
r e

ac
h

pr
ov
id
er

]
[fo

r e
ac

h
vN
IC

]

POST compute/v2.1/servers

POST compute /v2.1/servers

POST compute
/v2.1/servers

loop

alt

[fo
r e

ac
h

VN
F]

…

(b) Messages from/to the Orchestration-proxy.

Fig. 4: Diagrams of the messages sent or received by the developed proxies.

networks(2) connecting the compute nodes of single or multiple
domains.

A. SDN-LAN & SDN-proxy

Let’s consider the single-domain scenario illustrated in Fig-
ure 3(a). In this scenario, all compute nodes belong to the “yel-
low” domain, which is managed by a single VIM. In Open3,
OpenStack implements the VIM and optionally leverages on
the OpenDaylight instance, named SDN-OvS in our examples,
for configuring the OvS bridges running in the compute nodes
(usually named as br-int). When OpenStack receives from the
OSM’s RO a request for three VNFs of a new NS, connected
through a provider network, it chooses the compute nodes on
which these VNFs will be deployed according to its scheduling

(2)flat provider networks forward untagged traffic, while vlan provider
networks expect for VLAN tagged traffic to forward.

policy. Then, OpenStack deploys the VNFs and informs SDN-
OvS to configure the bridges of the chosen compute nodes.
The bridge configuration is sufficient for connecting the VNFs
located in the same compute node (e.g. VNF 1 and VNF 2),
or to export the traffic to the physical NIC, when it is directed
from a VNF to another non-collocated one (e.g. from VNF 2
to VNF 3). However, the traffic forwarding between the NICs
of the compute nodes requires the appropriate configuration of
the OpenStack guest network connecting them. This is the task
of the extra OpenDaylight instance, which we call SDN-LAN.

Open3 does not include any interface to SDN-LAN, as-
suming that it is standalone and proactively builds and keeps
active the provider networks, even in time periods that they
are not used. On the other hand, Open3++ relies on a

software daemon, named SDN-proxy(3), which repetitively
checks SDN-OvS and prompts dynamically SDN-LAN to
deploy and keep only the needed provider networks on top
of the domain’s underlying network. More specifically, SDN-
proxy checks SDN-OvS for the required provider networks
and forces SDN-LAN to form an isolated overlay network for
each provider network, which functions as an abstract layer-
2 switch. This function is completed with the assistance of
the Virtual Tenant Network (VTN) Manager plugin, which
is used by both OpenDaylight instances implementing SDN-
OvS and SDN-LAN. VTN-Manager enables the creation of a
virtual bridge (vBridge) for each provider network and VLAN
mapping is used for assigning the VLAN traffic of the provider
network to the respective vBridge (VLAN 0 corresponds to the
untagged flat network).

Figure 4(a) shows the sequence of REST/HTTP messages
exchanged between our daemon and the OpenDaylight in-
stances, SDN-OvS and SDN-LAN. SDN-proxy periodically
i) gets from SDN-OvS the provider networks (first GET mes-
sage), ii) gets from SDN-LAN the existing vBridges (second
GET message) iii) forces SDN-LAN to create a new vBridge
for each missing provider network (first POST message), iv)
maps each vBridge to the VLAN of the related provider
network (second POST message) and v) removes the vBridges
corresponding to non-existing provider networks (last POST
message). The latter three messages are in loops since they are
repeated for every vBridge that has to be added or removed.

The disadvantage of this SDN-proxy implementation is
that SDN-OvS is periodically checked, thus SDN-LAN gets
updated even after a period since SDN-OvS has changed.
Another solution is to make OpenStack logging these changes
(added or removed provider networks) in a file, using the log-
ging mechanism of the OpenStack Neutron component, while
SDN-proxy periodically reads this file and tracks the changes.
The time period of this process is significantly lower. The
two first GET messages of Figure 4(a) are replaced with the
tracking of the log file, while the two inner loops are repeated
again, for every added or removed network respectively. On
the other hand, the disadvantage of this approach is that SDN-
proxy has to be collocated with OpenStack, and the logging
mechanism of its Neutron component must be activated.

B. SDN-WAN & Orchestration-proxy

Let’s now focus on the multi-domain NS deployment, illus-
trated in Figure 3(b), where the three VNFs belong again to the
same NS, but they are deployed to different compute domains,
the “yellow” and the “red” one, which are connected through
the “orange” network domain. In Open3++, we developed a
daemon called Orchestration-proxy(4), that is a proxy between
the RO and the VIMs/WIMs. It pretends to be a VIM instance
for the RO and a RO for the underlying VIMs/WIMs. In
particular, Orchestration-proxy presents to the RO as a single

(3)The repository of SDN-proxy is given in this URL: http://repo.nitlab.inf.
uth.gr/karamiha/odl-project/tree/test

(4)The repository of the Orchestration-proxy software is given in this URL:
http://repo.nitlab.inf.uth.gr/karamiha/orchestrator

VIM responsible for a single domain and receives the requests
for the NS resources. Then, it “breaks” the set of resources and
assigns the subsets to various compute domains, interacting
with their VIMs. For these VIMs, it is behaving as the RO,
requesting the VNF deployment to their compute domains.
Except for this task, the Orchestration-proxy is responsible
to interact with the WIM(s) managing the network domain(s)
interconnecting these compute domains, in order to build the
VNF connections. Each WIM is actually an SDN controller,
called SDN-WAN, responsible for a network domain used
for the interconnection of other domains. Open3++ uses
OpenDaylight and the VTN-Manager plugin to implement
SDN-WAN, which again creates one vBridge for each provider
network connecting VNFs, and maps this vBridge to the
VLAN traffic of the provider network. The goal of both SDN-
LAN and SDN-WAN is to create overlay layer-2 networks on
top of their domains, using VLAN for their isolation. The
networks of the same VLAN but of different domains are
stitched together.

Figure 4(b) depicts the REST/HTTP messages exchanged
between Orchestration-proxy and the other functional blocks,
when a new NS is deployed. Among other messages, we dis-
tinguish the following: i) the RO requests from Orchestration-
proxy the utilization of a provider network (first POST mes-
sage from the RO), and Orchestration-proxy, in turn, requests
from each VIM/WIM the same network (four first POST
messages from the Orchestration-proxy). These requests are
either OpenStack POST messages to the VIMs of the compute
domains (similar to the request from the RO) or OpenDaylight
POST messages to the WIM of the network domain (similar
to the two first POST messages in Figure 4(a)). Then, ii) the
RO requests for a new vNIC (or port) for each VNF included
in the NS (second POST message from the RO). This request
is copied to one of the VIMs (first alt). Finally, iii) the RO
requests the creation of a new VM (or server) for each VNF
(third POST message from the RO), which again is copied to
a single VIM (second alt).

IV. EVALUATION

Both SDN-LAN and SDN-WAN are OpenDaylight in-
stances that utililize the VTN-Manager plugin, in order to
build the provider networks. VTN-Manager exploits the Link
Layer Discovery Protocol (LLDP) to discover the underlying
network and retrieve the shortest path between each pair
of switches. Each link is weighted with a cost, which can
be modified through the VTN-Manager northbound interface,
enabling the flexible redefinition of the shortest paths. VTN-
Manager reactively configures flows, which means that the
first packet sent from a VNF to another need some extra time
to be forwarded, until the controller configures the flows for
this. Each flow is specific enough to connect a particular VNF
couple, matching their MAC addresses.

The shortest path connecting a VNF couple is chosen by
VTN-Manager during the forwarding process of the very first
ARP request. If the first packet is forwarded from VNF 1 to
VNF 2, then the corresponding ARP request has the MAC of

WIM
(SDN-WAN) VIM

SDN
LAN

VIM

host host

SDN
LAN

host
host

host
host

host
host

host
host

host
host

ToR switch

Aggregate
switch

ToR switch

Aggregate
switch

Core switch

ToR switch

Aggregate
switch

ToR switch

Aggregate
switch

Transport
switch

Transport
switch

Transport
switch

Transport
switch

VNF1 VNF2 VNF3

NFV-MANO

NFVI

NFVO

vlan, VNF1, VNF2 vlan, VNF3vlan

Core switchCore switch Core switch

NS
VNF1 VNF2 VNF3

vlan

VNF1, VNF2

vlan
vlan

VNF3

vlan

RO

NSO

cluster or not

Fig. 5: Simple scenario illustrating the deployment of a NS with 3 VNFs over two compute domains (or data-centers), the
yellow and the red one, interconnected through a network domain, the orange one.

VNF 1 as source address and the broadcast MAC as destination
address, thus, the SDN controller learns the ingress switch and
the port that VNF 1 is attached to and pushes the packet to
all other switches. The other switches, in turn, forward this
packet to all ports except for the ones discovered by LLDP,
delivering the packet only to VNFs and not to switches. Once
VNF 2 responds with an ARP reply, the SDN controller learns
the ingress switch and the port of VNF 2 and calculates the
shortest path between the ingress switches of the two VNFs.
Then, it deploys the flows to the switches participating in this
path, matching only the packets sent from VNF 1 to VNF 2.

Although Open3++ benefits from the dynamic deployment
or removal of provider networks comparing to Open3, its delay
performance may be worse at the first packets exchanged be-
tween the VNF couples, due to its reactive flow configuration.
This evaluation is to estimate the average time needed for the
flow configuration connecting a new VNF couple, when these
VNFs are i) in the same compute domain or ii) in different
compute domains.

A. Intra-domain Delay

Let’s assume an SDN network with multiple switches
connected in a three-tier fat-tree network topology. This is
a typical scenario in a compute domain or data-center with
multiple interconnected compute nodes, using access or Top
of Rack (ToR), aggregate and core layer switches [14], as it
is depicted in Figure 5. In general terms, the compute nodes
of a data-center are grouped to racks, each one equipped with
a ToR switch connecting its compute nodes. Each ToR switch
is connected to one or more aggregate switches, which are
connected to one or more core switches.

In the example of Figure 5, there is a NS with three
sequentially connected VNFs, named VNF 1, 2 and 3. VNFs
1 and 2 are deployed in the yellow compute domain, in two
different compute nodes belonging to different racks. Although
the ToR switches connecting these two VNFs are unique,
the aggregate switch connecting the two ToR ones is not
exclusive. In this example, the left yellow aggregate switch
is chosen by the VTN-Manager of SDN-LAN, instead of the
right yellow one. If the ToR switches cannot be physically
connected through an aggregate switch, then a longer path is
used, including two aggregate switches and a core one. As
follows, two VNFs of the same compute domain are either i)
directly connected, if they are hosted on the same compute
node, or connected through ii) a single ToR switch, or iii) two
ToR and an aggregate switch or iv) two ToR, two aggregate
and a core switch. From our experimentation in NITOS, we
checked that the ping delay for the first packet sent from VNF
1 to VNF 2 is between 8−12 msec, including the delay of the
ARP and ICMP forwarding, as well as the delay of the reactive
flow configuration. The upper and lower delay limits are not
significantly affected by the path length, except for the case
that the VNFs are directly connected. The compute nodes are
NITOS nodes, featuring Intel Core i7-2600 CPU at 3.40 GHz
and 8M Cache, while the switches are emulated by executing
Mininet in a separate NITOS node. All NITOS nodes are
interconnected through an OpenFlow HP 3800 switch.

B. Inter-domain Delay

In the same example of Figure 5, VNFs 2 and 3 are deployed
in different compute domains, connected through a network
domain. When VNF 2 pings VNF 3, the yellow SDN-LAN

pushes the right yellow core switch to forward the ARP request
of VNF 2 to the left orange switch. For the orange SDN-
WAN, the left orange switch is the ingress switch of this
ARP request, thus repeating the same process with before,
the packet is forwarded from the right orange switch to the
left red core switch. Finally, the red SDN-LAN receives this
ARP request and similarly pushes it to the left red ToR switch
to be forwarded to VNF 3. The duration of the ARP request
forwarding from VNF 2 to VNF 3 is expected to be almost
three times higher comparing to the previous case, between
VNF 1 and VNF 2. If the involved controllers were more,
having more network domains between the two compute ones,
the duration would be respectively higher. This is also verified
by our experimentation in NITOS, since the delay of the ping
between VNF 2 and VNF 3 is between 20 − 33 msec. The
switches of each domain are emulated executing Mininet in
separate NITOS node, one for each domain.

V. CONCLUSION

This paper presents an implementation of multi-domain
NS deployment, which is based on OSM, OpenStack and
OpenDaylight, as well as our SDN-proxy and Orchestration-
proxy. There are many challenges, especially in programming
Orchestation-proxy, which can be modeled as NP-hard op-
timization problems, such as Location-Routing Problem and
Virtual Network Embedding. The focus of this work is to
present the framework for applying the solutions, relying on
widely-used software tools. Our work is continuously ex-
panding in many directions, including the optimization of the
VNF deployment at the compute domains, considering either
the compute load of the data-centers or the network load of
their connections. We also plan to exploit other OpenDaylight
features, for enhancing SDN-WAN and SDN-LAN.

ACKNOWLEDGMENT

This work has been financially supported by the EU Horizon
2020 project 5G-PICTURE under grant agreement No 762057.
The European Union and its agencies are not liable or other-
wise responsible for the contents of this document; its content
reflects the view of its authors only.

REFERENCES

[1] ETSI GS NFV-MAN 001 v1.1.1 (2014-12), “Network Functions Virtu-
alisation (NFV); Management and Orchestration”.

[2] ETSI GS NFV-EVE 005 v1.1.1 (2015-12), “Network Functions Virtual-
isation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural
Framework”.

[3] ETSI OSM, “Open Source MANO”, https://osm.etsi.org.
[4] O. Sefraoui, M. Aissaoui and M. Eleuldj, “OpenStack: toward an open-

source solution for cloud computing”, International Journal of Computer
Applications, vol. 55, no. 3, pp. 38-42, 2012.

[5] “OpenStack”, https://www.openstack.org.
[6] J. Medved, et al, “Opendaylight: Towards a Model-Driven SDN Con-

troller architecture”, IEEE WoWMoM, 2014.
[7] “OpenDaylight”, https://www.opendaylight.org.
[8] “Network Implementation Testbed using Open-Source platforms”, https:

//nitlab.inf.uth.gr.
[9] “EPA and SDN assist”, https://osm.etsi.org/wikipub/index.php/EPA

and SDN assist.

[10] R. Bonafiglia, G. Castellano, I. Cerrato and F. Risso, “End-to-end service
orchestration across SDN and cloud computing domains”, IEEE NetSoft,
2017.

[11] J. Caparinha, et al, “Deployment of Virtual Networks Functions over
multiple WAN interconnected PoPs”, IEEE NFV-SDN, 2017.

[12] J.F. Riera, et al, “TeNOR: Steps Towards an Orchestration Platform for
Multi-PoP NFV Deployment”, IEEE NetSoft, 2016.

[13] 5G Exchange (5GEx), http://www.5gex.eu/.
[14] M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable, Commodity Data

Center Network Architecture”, ACM SIGCOMM, 2008.

