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Abstract—In this paper, we focus on 5G heterogeneous net-
works, considering the existence of multiple Distributed Units
(DUs) that can provide access to end users implementing several
access technologies, managed by a Central Unit (CU) responsible
for the allocation of network resources. Based on a distributed
dynamic pricing scheme, that gives to User Equipment (UE)
the ability to select the appropriate Radio Access Technology
(RAT) depending on its sensitivity to congestion, we investigate
a scheme of greater granularity, where UEs are able to allocate
each of their traffic classes to the appropriate RAT, exploiting
their multi-homing features. As UEs are sequentially polled to
request for network resources, we develop a centrally controlled
proportionally fair ranking as a benchmark policy. We then
propose a dynamic polling policy that presents close performance
to the benchmark policy, while maintaining a distributed nature.
We evaluate our framework for a variety of traffic classes in
terms of Quality of Service (QoS) requirements, and we provide
results on capacity utilization and load distribution over available
RATs, as well as access price variations.

I. INTRODUCTION

Ultra-Dense Heterogeneous Networks (UDHetNets) are ex-
pected to support the transition to the 5th Generation (5G)
of mobile network access by offering dense network setups
and a plethora of different networks for the user devices
to associate to [1]. Based on their application needs for
network transfer, the network selection becomes a problem of
critical importance; for example, safety applications should be
prioritized over the network, but using networks that operate
in the unlicensed frequency spectrum bands may not ensure
that the message is delivered timely. Therefore, the selection of
the appropriate Radio Access Technology (RAT) that should
be used is of paramount importance.

The provisioning of such network connectivity over multiple
RATs is assuming the existence of multi-homed clients; in
fact, contemporary devices are able to associate to multiple
networks at the same time (e.g. LTE, fallback mode to UMTS
and WiFi concurrently), thus rendering the concurrent transfer
of data over multiple interfaces feasible. As a matter of fact,
several protocols have emerged that support multi-homing
features. The two most notable examples are Multipath-TCP
(MP-TCP) and Stream Control Transmission Protocol (SCTP).
Switching to the operator’s side, hooks for selecting the RAT
that will serve the clients of the network are present in the
recent standardization work for 5G-New Radio (5G-NR) [2].
In the detailed architecture, the base station components are

disaggregated to Central Units (CUs) and Distributed Units
(DUs). The DUs may offer several heterogeneous network
connections (e.g. 5G-NR, LTE, WiFi), managed through a
single CU and allowing the operator to select the technology
that will be used to forward the traffic to the User Equipment
(UE) of the network [3].

Nevertheless, RAT selection is subject to a number of
different parameters. For example, selecting an IEEE 802.11ac
network over LTE may promise higher speeds for the wireless
part, but this is only valid in the case of low interference and
contention. Similarly, for the case of just transmitting email
traffic, a legacy UMTS connection suffices for most of cases.
If we bring into the picture the fact that cellular connections
are metered, contrary to free WiFi hotspots that are found in
abundance, the problem of selecting the appropriate RAT to
transmit the client traffic becomes more complex.

In this work, we formulate the problem of distributed RAT
selection by considering multiple traffic classes (TCs) over
different heterogeneous technologies for serving the different
applications running at the UEs of the network. In our prior
work [4], we showed how UEs can distributively take such
decisions, applying three different policies for ordering the
UEs that define the polling order for the allocation of network
resources. The pricing scheme applied is inspired from the
Paris Metro Pricing (PMP), a service differentiation scheme
that was first used in Paris metro to give to its passengers
the ability to opt for less congested wagons. Here, we extend
this solution based on a centrally controlled fairness scheme
for the UEs, by ordering them based on weights indicating
their sensitivity to traffic congestion (depending on the under
study technology) and polling them based on the distributed
policy that is closer to the centralized approach. We derive the
proportionally fair ranking of the UEs and propose a dynamic
policy selection scheme for polling the clients of the network.

The rest of the paper is organized as follows: Section II
provides a literature overview of other approaches for the RAT
selection problem. In Section III we describe our system model
for deriving the technologies that will be used per each client.
Section IV presents our experimental setups and results that
we receive for different policy settings. Finally, in Section V
we conclude our work.



II. RELATED WORK

RAT selection has been a widely investigated problem that
has gained attention lately for UDHetNets. A simple solution
for determining the RAT that the network’s UEs shall associate
to, is by assigning prices for each available technology. The
rise of heterogeneous networks as a solution to the problem
of capacity crunch, reinstates the pricing problem, this time
with the existence of multiple traffic classes per mobile
user that can be concurrently allocated to different access
technologies. An extensive classification of network selection
policies for HetNets was provided in [5]. Similarly, a reward
based algorithm is presented in [6], where rewards received
from the base stations are used by the users to independently
update the traffic that is sent to each traffic class per available
technology. In [7], the multi-user RAT selection problem is
modeled as a non-cooperative game, where each user tries to
selfishly maximize its own throughput, and the impact of a
user’s decisions on other users performance is investigated.
The average number of per-user RAT switchings is used as
a metric to evaluate the convergence time of the proposed
algorithms. A model for establishing on-demand multi-RAT
conditions is proposed in [8], where mobile users form short
range mesh networks and collaborate, by sharing their Internet
access with provision for proper routing policies with load-
balancing and fairness. A pricing-based scheme for concurrent
uplink access through LTE and WiFi is proposed in [9]. In
[10], the coexistence of small cell service providers with
macrocell providers is considered.

An initial work for the application of Paris Metro Pricing
(PMP) in the context of packet delivery networks was provided
in [11] as a solution to the congestion control problem for
differentiated classes of service levels. Similarly in [12] and
[4], we investigated its applicability in Multi-RAT deploy-
ments, for several traffic classes per UE served by the available
access technologies. These works concluded in the application
of three different policies for the manner of polling the clients
and calculating the prices per each technology. In this work,
we extend the scheme in order to include a policy based on
ordering the Multi-RAT UEs according to the Kendall tau
distance from the weighted proportionally fair ranking, that
is optimal, and apply a dynamic scheme for selecting RATs
per each traffic class per each client.

III. RAT SELECTION IN HETEROGENEOUS NETWORKS

The problem of radio access technology selection has at-
tracted much research effort leading to a variety of decision
algorithms. The most important metric that drives the decisions
of the proposed algorithms is the SINR, based on which,
the outage probability and the average rate can be computed
[13]. In LTE-A, access decisions are based on the Reference
Signal Received Power (RSRP) and the Reference Signal
Received Quality (RSRQ). RSRP measures the power of the
LTE reference signals spread over the full bandwidth and
narrowband, while RSRQ considers RSSI and the number of
the used resource blocks measured over the same bandwidth.

In handover procedures, the LTE-A specification provides the
flexibility of choosing between RSRP, RSRQ, or both.

A. Distributed RAT Selection

While measurements based on received power provide a
tangible approach for efficient access technology selection,
the inclusion of low power and low range access options like
Small Cells does not make power-based decisions efficient.
A UE under a Small Cell coverage would take a decision
to associate with a higher power macrocell even if it is more
congested than the Small Cell. This decision would have direct
impact on the energy efficiency of the UE, in addition to the
lost opportunity for more network resources. To solve this
problem, algorithms that add cell selection bias have been
proposed [14]. A bias, virtually expanding the range of a low
power access option, is added to the UE’s received power
based metrics, pushing them into lower power ones.

The introduction of heterogeneity as a key element of the
5G networks architecture [15], only adds to the complexity
of access decisions. The availability of several radio access
technologies in an heterogeneous network landscape calls for
more intelligent access models. To this end, we developed a
dynamic pricing framework based on [12] and [4], enhancing
the Paris Metro Pricing scheme, that was first introduced for
congestion control of the metro wagons of the Paris under-
ground transportation network with static price differentiation.

B. Dynamic Pricing Framework for Heterogeneous Networks

In the first part of the framework, we considered a heteroge-
neous network of multiple access technologies (LTE, UMTS,
WiFi), where each UE could choose the access technology for
its traffic that maximizes its utility function, expressed as:

Ui(m) = V − pm − θif(Qm, C̄m) (1)

where V is a constant price for accessing the multi-technology
service, pm is the current price for accessing technology m,
θi is the sensitivity to congestion of UEi and f(Qm, C̄m) is a
function for the perceived congestion at class m. Congestion
perception is a function of the mass of UEs in access technol-
ogy m denoted as Qm and of its available capacity C̄m. Setting
a maximum and a minimum price for each technology, for the
cases of non-available and fully available capacity respectively,
a dynamic price per access technology is formed, as a function
of its load:

pm = max

(
pmin
m , pmax

m

(
1− C̄m

Cm

))
(2)

where Cm is the total capacity of access technology m.
Aiming to maximize their utility functions, UEs choose the
appropriate access technology with the minimum price that
concurrently satisfies their Quality of Service (QoS) require-
ments. By introducing dynamic pricing in the Paris Metro
Pricing scheme, where decisions are made distributively by
the UEs based on their utility functions, an autonomous access
technology selection algorithm is provided for heterogeneous
networks, proved to lead to Wardrop equilibrium [16].



In the second part of the framework, we extended the
proposed dynamic pricing scheme to also consider multiple
traffic classes per UE, with different QoS needs to represent
the diverse requirements of end-user applications. In this part
we associated each traffic class of UEs with a similar utility
function characterized by the sensitivity of each traffic class:

U l
i (m) = V − pm − θlifm(Qm, C̄m) (3)

For each traffic class, a UE chooses the RAT that maximizes
the corresponding utility function. In this case, θli = rli/wi

represents the sensitivity of UEi’s traffic of type l, with rli
being the data rate demand of UEi for its traffic class l, and wi

the normalized spectrum efficiency of UEi, with wi ∈ (0, 1],
which is used to abstract the physical layer for the channels of
the available RATs. Additionally, we provided each UE with
the capability of multiple concurrent associations. Moreover,
we extended the system model with multi-homed UEs and
we included higher throughput 5G technologies (WiGig). We
assessed this enhanced pricing scheme with a real testbed
evaluation [4].

C. Centralized System Design

To assess the proposed dynamic Paris Metro Pricing based
resource allocation framework, we compare it with a central-
ized system, where decisions are taken based on UEs traffic
needs with a weighted proportionally fair approach. In this
Section, we provide a detailed analysis of the centralized
access decision that is based on a weighted proportionally
fair solution. We formulate and solve the centralized scheme
as a utility maximization problem and provide the optimal
solution for weighted proportionally fair bandwidth allocation,
and the UEs are then ranked in descending order of allocated
bandwidth. We compare this optimal ranking to the distributed
dynamic PMP allocation ranking in terms of pairwise disagree-
ments using Kendall tau distance [17].

Every UE may have bandwidth needs for up to L traffic
classes. Each traffic class presents traffic sensitivity θli, and
the average traffic sensitivity of UEi is defined as θi =∑L

l=1 θ
l
i/(1 · di), where di = {d1i , ..., dLi } and

dli =

{
1 if UEi has traffic class of type l
0 if UEi has no traffic class of type l

(4)

Assuming that N UEs are served by the HetNet, each UEi

is allocated bandwidth equal to ci, i = (1, ..., N), such that∑N
i=1 ci ≤ C, where C is the total system capacity. We need

such an allocation that is proportionally fair over the average
traffic sensitivities θi of the served UEs by the HetNet. Based
on the definition of proportional fairness by Kelly et al. [18],
a vector of rate allocation c = (c1, ..., cN ) is proportionally
fair if it is feasible, that is c ≥ 0 and

∑N
i=1 ci ≤ C and if

for any other feasible vector c∗, the aggregate of proportional
changes is zero or negative and is expressed as

N∑
i=1

θi
c∗i − ci
ci

≤ 0 (5)

that can be also expressed as
N∑
i=1

θi(log(ci))
′dci ≤ 0 (6)

We observe from (6) that the proportionally fair allo-
cation solution maximizes the utility function Ui(c) =∑N

i=1 θi(log(ci)). Thus, in order to find the proportionally fair
solution we have to solve the following maximization problem

max
c

N∑
i=1

θilog(ci)

subject to

N∑
i=1

ci 6 C

and ci > 0, ∀i = 1, ..., N (7)

The problem in (7) has a unique solution since the utility
function is strictly concave and the constraint set is convex.
We relax the constraints and define the Lagrangian [19], and
we change ci > 0 to −ci 6 0

L(c, µ) =

N∑
i=1

θi(log(ci))−µ0

(
N∑
i=1

ci − C

)
+

N∑
i=1

µici (8)

with µ0 > 0 and µi > 0, i = 1, ..., N . Next, we start with
the stationarity condition of the Karush-Kuhn-Tucker (KKT)
optimality conditions and we have

∇ciL(c, µ) =
θi
ci
− µ0 + µi = 0 (9)

and since θi > 0, we have that µ0 > µi, which means that
µ0 > 0. Taking the complementary slackness conditions we
have

µ0

(
C −

N∑
i=1

ci

)
= 0 (10)

µici = 0 (11)

µ0 > 0 and µi > 0, i = 1, ..., N (12)

As µ0 > 0, it follows from (10) that
N∑
i=1

ci = C (13)

which means that ci, i = 1, ..., N cannot be zero. Therefore
by forcing µi = 0, ∀i = 1, ...N we have from (9)

ci =
θi
µ0

(14)

By combining (13) and (14) we reach the optimal solution
which represents the weighted proportionally fair solution

ci =
θi∑N
i=1 θi

C (15)

Based on the proportionally fair bandwidth allocation of ci
to each UEi, i = (1, ..., N), we derive a ranking τpf of the UEs
in the HetNet in descending order of allocated bandwidth. We



CU creates a system report 
including per RAT prices, available 

capacities and mass of TCs 

The report is sent sequentially to each UE in the 
HetNet based on the polling policy that presents the 
higher Kendall's tau correlation coefficient with the 

optimal centralised solution

Is the polled UE 
better-off by reallocating its 

TCs to different RATs?

CU proceeds to the 
next UE according to 
the ordering policy

CU reallocates the traffic classes to the 
requested RATs (DUs) and updates 
available capacities and mass of TCs

No

Yes

Fig. 1: Flowchart of polling functionality during a system cycle

denote as τpmp the ranking that results from the dynamic PMP
scheme we proposed, and we use Kendall’s tau correlation
coefficient K(τpf , τpmp) to compare the optimal centralized
solution with our distributed scheme. Kendall tau distance
reveals the pairwise disagreements between the two ranking
lists.

D. Dynamic Selection of Distributed Policies

In our proposed framework in [4], the prices are updated
periodically and whenever UEs enter or exit the area covered
by the HetNet. We refer to the events that result in prices up-
dates as cycles of the system. The practical need for sequential
polling of the covered UEs to request for network resources
led us to introduce three policies to define an appropriate
priority in the ordering that the UEs are queried. In the first
ordering policy τ1, the Network controller is ordering UEs in
the HetNet based on their aggregate data rate demands of all
traffic classes

(∑L
l=1 r

l
i

)
, in descending order. In the second

policy τ2, the ordering is done in descending order of the
normalized spectrum efficiency of the UEs, (wi). The third
policy of ordering τ3, is based on the UEs’ average sensitivity
to the changes of the network conditions θi.

In this work, we provide a dynamic selection of ordering
policy to achieve the closest ordering to the weighted pro-
portionally fair approach, while maintaining the distributed
nature of our framework. In every cycle, where prices are
updated based on the congestion of the RATs, the Network
controller calculates the correlation coefficients K(τpf , τj)
for j = (1, 2, 3) and applies the policy with the maxi-
mum Kendall’s tau correlation coefficient with the centralized
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Fig. 2: Multi-RAT System Architecture

weighted proportionally fair approach. During a cycle the
functionality of TC reallocation is summarized the flowchart
provided in Figure 1, where every UE is polled and asked
whether it is better-off by reallocating its TCs or not. When all
UEs in the HetNet are polled, the system examines whether
new UEs entered/left the HetNet, calculates the new policy
rankings, and decides to change policy in case a different one
presents higher Kendall’s tau correlation coefficient.

IV. EVALUATION

In this section, we provide a description of the system
architecture and experimental evaluation of the proposed
framework. First, we present the system components and the
selected configurations and then we showcase results and
insights of the experiments. Towards evaluating the capabilities
of our proposed system in a large scale environment, we
employed simulations rather than a real testbed environment as
we did in our previous work [4] to avoid scale limitations. We
developed a custom simulator in Python and we integrated it
with the CU-DU implementation developed in [3]. Moreover,
we organize our evaluation in five different experiments,
during which the prices are constantly recalculated based on
our proposed framework, and transmitted to the UEs of the
network.

A. System Architecture

The overall system architecture that we investigate is de-
picted in Figure 2. We consider clients ranging from 20 to 60
UEs entering the Multi-RAT environment, whereas the base
stations are disaggregated instances of DUs managed by a
single CU. The CU is in charge of the selection of the policies
for ordering the UEs and querying them for their TCs status
and the preferred technology that will be used per each TC.
We consider the existence of four different RATs: 1) the 3G
RAT, with nominal capacity up to 42 Mbps, 2) the WiFi
RAT, with capacity up to 130 Mbps for the IEEE 802.11n
technology with 20MHz channel bandwidth and 2x2 MIMO
configuration, 3) the 4G RAT with up to 70Mbps supported
speeds, considering an LTE cell with 10MHz bandwidth and
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Fig. 3: Experiment results for different policies regarding traffic distribution and utilization per each RAT

2x2 MIMO configuration, and 4) the WiGig RAT supporting
up to 600 Mbps channel capacity. These measurements are de-
rived by experimentally measuring the available technologies
in the NITOS wireless testbed, an ecosystem that provides all
these technologies for experimenting with [20].

TABLE I: Traffic Class configuration per each UE

TC Identifier Throughput Range (Mbps)
TC1 - Background 0.3 - 1.0 Mbps
TC2 - Interactive 1.1 - 2.5 Mbps
TC3 - Streaming 2.6 - 8.0 Mbps
TC4 - Conversational 8.0 - 25.0 Mbps

Regarding the different traffic classes, we consider 4 dif-
ferent types with throughput values as indicated in Table I,
based on [21] and each UE should be able to maintain up to
4 different TCs simultaneously. A representative scenario over
which we evaluated our dynamic policy selection algorithm is
the following: Each UE uniformly selects throughput values
for each class from the ranges given in Table I. Initially, in our
experiments we consider 20 UEs connected to the different
available RATs in a random manner. During the execution
of the experiment, we consider UEs entering the system and
as they move, they may choose to update the allocation of
technologies for their traffic classes according to the advertised
prices, or leave the system. We consider 24 more UEs entering
the system, 11 more passing through our system and 5 more
being denied access by the network controller running at the
CU side, as their needs cannot be covered by the system. This
totals to an environment of up to 60 UEs actively participating
in the evaluation of our scheme.

B. Experiments

In this section, we present our experimental findings. We
use five different policies for the UE ordering, with policies
1-3 being extensively discussed in [4]. Policy 1 orders the UEs
based on the data rate demand of each client. Policy 2 applies
ordering based on the spectrum efficiency of each client (e.g.
how each client perceives the wireless channel as occupied by

other users). Policy 3 is ordering the UEs of the network based
on their perception of congestion in the network. Policy 4 is
a solely centralized approach, which calculates the weighted
proportionally fair bandwidth allocation of the connected UEs
based on (15) and derive the ranking τpf , as indicated in
Section III-C. Policy 5 is calculating Kendall’s tau correlation
coefficient [17] between policy 4 and policies 1-3, and selects
the one with the optimal distance, i.e. higher correlation, every
time that an event in the Multi-RAT system triggers a status
update (periodically, when UEs enter/exit the HetNet).

Our goal is to examine how the different policies affect the
distribution of the TCs to the available RATs of the system and
how the overall throughput of the system is allocated to the
available RATs depending on the applied polling policy. Figure
3 shows the distribution of overall exchanged bandwidth
across the different RATs participating in our system and the
utilization of each technology.

As we observe in Figure 3a, for all the policies that
are applied, almost half of the total bandwidth is assigned
to the WiGig technology. This is reflected also in Figure
3b, as we see that due to the wide capacity of the WiGig
technology, it is utilized mainly for traversing traffic belonging
to TC4. The selection of each RAT per each TC is taking into
consideration the price allocated for using this technology. The
price variations during our experiment are shown in Figure
4a. In order to compare the policies under examination, we
normalize the costs based to the maximum price achieved
on each experiment and the results of min, max and average
values of the RAT prices, with the latter represented as dots.

Based on the above, we conclude that Policy 3 and Policy
5 (dynamic) are the ones that perform better in terms of price
and fairness (as can be seen in Fig. 4). We clearly notice that
this is also mirrored in the evaluation of the Kendall’s tau
correlation coefficient that is calculated by our algorithms in
Figure 4b. After some initial iterations, Policy 3 is performing
very close to the optimal (Policy 4), whereas Policy 2 is the
worst in terms of fairness.
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Fig. 4: Experiment results related to RAT pricing and Kendall’s tau coefficient calculations

V. CONCLUSION

In this work, we developed an Ultra Dense Heterogeneous
system that decides on how the UEs shall select the RATs for
each of their traffic classes to be served based on different
policies and dynamic pricing of each RAT. We modeled
and evaluated different policies, based on the UE’s data rate
demands, spectrum efficiency and sensitivity to network con-
ditions and compared them to the optimal, proportionally fair
allocation. Our results showed that the dynamic application
of these policies is able to achieve close to the optimal
proportionally fair policy, as indicated by their Kendall’s tau
correlation coefficients. In the future, we foresee the experi-
mental evaluation of these pricing schemes over a real testbed
environment, and the application of novel mobility schemes
for the clients entering and leaving the Multi-RAT system.
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