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Abstract—Ultra-Dense Heterogeneous Network deployments
are expected to boost the offered network capacity and enhance
the user-perceived Quality of Experience, through the simultane-
ous offering of multiple technologies using distinct or shared
wireless spectrum. In such environments with a plethora of
available Radio Access Technologies (RATs), the network UEs
shall decide either independently or assisted through operator
based services on which network they shall use to better serve
their needs. In this work, we model the network selection problem
in a Multi-RAT system, based on the Paris Metro Pricing (PMP)
scheme, enhanced with dynamic pricing formed by the congestion
of each available technology. We assume that the network UEs
are equipped with multi-homing features and thus are able
to use concurrently more than one technologies, based on the
requirements of the applications requesting network connectivity
(e.g. UHD video streaming). We port and experimentally evaluate
the proposed system model over a testbed setup, using distributed
components running at the UEs and at a Core Network controller.
We provide evaluation results on the average cost per UE for the
selected RATs, the average data rate distribution of each UE
per RAT and how these performance metrics are affected under
different client ordering policies at the network controller.

I. INTRODUCTION

Ultra Dense Heterogeneous Networks (HetNets) are ex-
pected to bring numerous advantages for the mobile network
operators (MNOs) of the next generation cellular networks, by
offering enhanced network capacity and diverse technologies
for serving the end-users. Through enhanced spectral tech-
niques and spectrum coordination among the available cells,
5G networks will utilize bands ranging from the sub6-GHz to
cm- and mm-Wave bands. Yet, this type of equipment upgrade
for the Radio Access Network (RAN) incurs extra deployment
and operation costs for the MNOs. When considering that the
Average Revenue Per User (ARPU) is either flat or even slowly
decreasing [1], it becomes clear that cost efficient techniques
are required in order to keep in pace with the demand-driven
evolution in the cellular technology.

Nevertheless, through the utilization of off-the-shelf compo-
nents operating in multiple bands and with different technolo-
gies, HetNets can be formed with low CAPEX and OPEX
costs. Forming HetNets for adding to the overall network
capacity has existed for legacy technologies as well, (e.g.
UMTS, LTE) through the addition of low energy consuming
devices with lower coverage in the network (e.g. femto-/pico-
cells). Recent efforts have also focused on the inter-networking

of cellular technologies with WiFi as well, as a means to add-
up to the offered network capacity with low-cost solutions (e.g.
through the LTE-WiFi Aggregation Adaptation Protocol [2]).
The incorporation of the new spectrum that 5G is expected
to operate, creates a complex ecosystem for allocating the
operator served clients to each of the offered technologies,
while meeting diverse demands for network capacity.

This technology allocation problem becomes even more
complicated when considering that the perceived Quality of
Experience (QoE) highly depends on the application that is
running on the network UE. Different applications have ver-
satile demands for the network capacity; UHD video requires
more than 25Mbps to be dedicated for the application, whereas
an email application is only served as background traffic.
Based on the existing technology offering for running multi-
homed end-clients (e.g. MPTCP, using SDN and software
switches [3]), a network client might benefit from having
simultaneously several connections of different technologies
active to the Internet. In such an environment, efficient map-
ping of each application to the available technologies might
significantly enhance the perceived QoE, whereas alleviate the
burden placed on the operator serving multiple data-intensive
traffic streams. Nevertheless, multiple traffic classes for the
applications add to the complexity of the network resources
allocation to the served clients.

The main questions that arise in such heterogeneous envi-
ronments with multiple RATs being offered to the network
UEs, and multiple traffic classes per UE are:

1) Which technology should a UE select for the different
types of traffic.

2) When should a UE switch the serving network for a
specific traffic class.

3) How should an operator charge each RAT.
4) How these decisions affect the overall system stability.

In order to answer these questions, we extend our previous
work in [4], where we introduced a network selection scheme
based on the Paris Metro Pricing (PMP), a service differenti-
ation scheme that was first used in Paris metro to give to its
passengers the ability to opt for less congested wagons. In this
paper we propose a system model that takes into consideration
multiple traffic classes concurrently utilized by each UE, and
multiple networks being offered by the MNO, forming a Multi-



RAT system. We evaluate the performance and stability of
the system through extensive experimentation over multiple
technologies in an open wireless testbed.

The rest of the paper is organized as follows: Section II
presents relevant works on the RAT selection policies and
methodologies. In Section III we introduce our system model.
Section IV includes the description of our system architecture,
and in Section V we showcase our experimental findings.
Finally, in Section VI we conclude our work.

II. RELATED WORK

Different access schemes have been proposed in literature
for exploiting the coexistence of heterogeneous wireless tech-
nologies for improving the Quality of Service (QoS) and
Experience (QoE) of the mobile users. In [5], a survey on
the different models for network selection in HetNets is
provided, with the solutions being classified based on the
proposed utility functions and system models. Similarly, in [6],
authors classify the respective algorithms based on the location
where the decision making network selection components are
running, as either partially or fully distributed. In [7], a fully
distributed access point selection algorithm is presented based
on no-regret learning. Through the application of this scheme,
the system is able to reach a correlated equilibrium state.
Authors in [8], formulate the RAT selection problem using
a dynamic evolutionary game and introduce a centralized
algorithm based on reinforcement learning. In [9], the RAT
selection problem is modeled as a non-cooperative game, and
is evaluated for its convergence, efficiency, and practicality.
Through their approach, each user tries to selfishly maximize
its own throughput, while the impact of a user’s decisions on
other users performance and the convergence of the system to
Nash equilibria is investigated. The authors conclude that an
improvement path can be repeated infinitely with a mixture
of classes. As network convergence is the target of these
algorithms, authors in [10] discuss the convergence properties
of network selection games. The network selection process
is studied as a non-cooperative game, and is evaluated for
the cases where each client uses its own preference to select
a network, and for a combination of client and network
preferences to arrive at pairings.

Contrary to the majority of works that deal with the max-
imization of the user throughput, authors in [11] propose the
user demand-centric optimization, where users seek to maxi-
mize quality of experience (QoE). Their research validates the
existence of user demand diversity gain and the effectiveness
of their learning algorithm in improving the system efficiency
and QoE fairness. Authors in [12] consider a heterogeneous
cellular network where each user chooses among multiple
access technologies. The competition of the users is modeled
as an incomplete information game where players are not
aware of other players actions. An incentive mechanism that
aims to motivate WiFi Access Points (APs) to participate in
heterogeneous networks, by providing an access class to the
existing cellular infrastructure, is proposed in [13]. The pricing
strategy for the inclusion of third party WiFi APs is formulated

as a Stackelberg game between the mobile network provider
and the third party WiFi APs.

The authors in [14] consider a general model of congestion
externality for the PMP and investigate the conditions of
congestion functions that guarantee the viability of the PMP
scheme. Similarly, in [4] we propose and evaluate a dynamic
pricing algorithm for HetNets, based on the PMP scheme. In
this work, we build on our prior experience and further extend
it to MATCH (Multiple Access for multiple Traffic Classes
in 5G HetNets), aiming to include multiple traffic classes per
each UE, corresponding to the diverse network communication
needs that applications serving the end-user are requiring. We
further extend the system model with multi-homed UEs and
with the inclusion of higher throughput 5G technologies (e.g.
WiGig) and evaluate the proposed pricing scheme with a real
testbed evaluation.

III. SYSTEM MODEL

We consider a heterogeneous environment with M classes
of available radio access technologies that belong to the same
cellular service provider. Each class m refers to a different
radio access technology (e.g. 4G, 3G, WiFi, mmWave) with
capacity Cm, resulting to a total system capacity equal to
C =

∑M
m=1 Cm. We assume that there are L types of user

traffic classes and each UEi may have traffic demands for
these types of traffic. The traffic of each UEi is characterized
by the vector θi = {θ1i , ..., θLi }, where θli = rli/wi represents
the sensitivity of UEi’s traffic of type l, with rli being the
data rate demand of UEi for its traffic class l, and wi the
normalized spectrum efficiency of UEi, with wi ∈ (0, 1] for
i = (1, ..., N), which is used to abstract the physical layer for
the channels of the available RATs, including the frequency
selectivity due to transmissions in different frequency bands.
As we focus on access layer decisions, we provide wi as a
plug-in parameter to our dynamic pricing scheme, available
for physical layer analysis. θli represents the ability of UEi’s
traffic of type l to adapt easily to changes in the network
conditions, while still meeting specific QoS requirements and
maintaining the QoE for the user. The mass of traffic classes
allocated to RAT class m is denoted by Qm, and without loss
of generality we assume that the total mass of traffic classes
of the UEs is equal to 1. The mass of traffic classes that are
not allocated to a RAT class is equal to Q0 = 1−

∑M
m=1Qm.

We focus on UEs that are under the coverage of all provided
radio access technologies as depicted in Fig. 2. Each traffic
class l of UEi is allocated to a RAT class m such that the
corresponding element bm,l

i of an M × L matrix Bi is equal
to θli, if its traffic class l is allocated to the RAT class m, and
0 otherwise. Thus, the traffic allocation matrix Bi of UEi,
with columns representing the UE’s traffic classes and lines
the available RAT classes, is expressed as:

Bi =


θ1i 0 0 · · · 0
0 θ2i θ3i · · · 0
...

...
...

. . .
...

0 0 0 · · · θLi

 (1)



We define as bi, a vector of size 1×M , where each element
bmi is the sum of each row of Bi. Thus, bmi =

∑L
l=1 b

m,l
i .

We also define ai, a RAT access index vector of size 1×M ,
where ami = 1 if bmi > 0 and ami = 0 if bmi = 0.

A UEi with congestion sensitivity θi, using the access
classes indicated by ai has a utility equal to:

Ui(Bi) = V (1 · ai)− ai · p− θi · f (2)

where V is a flat-rate valuation of accessing a class of
the multi-RAT service and 1 · ai is the number of con-
currently accessed RAT classes by UEi. The access charge
vector p = {p1, ..., pM} represents the price of each RAT
at the time a UE is deciding to which RAT classes it
will allocate its traffic classes. The vector of functions
f = {f1(Q1, C̄1), ..., fM (QM , C̄M )}, represents the perceived
congestion of the M available RAT classes by all UEs in the
HetNet. Thus, fm(Qm, C̄m) is a function for the perceived
congestion at class m, and the available capacity of access
class m is denoted by C̄m. We assume that V ≥ p1 > p2 >
... > pM and therefore a UEi with traffic classes of sensitivity
θi will choose, in a decomposed approach for each traffic
class l, the service class that maximizes its discrete traffic
class utility:

U l
i (m) = V − pm − θlifm(Qm, C̄m) (3)

such that:
m(θi) = argmax

1≤m≤M
U l
i (m) (4)

or no service if U l
i (m) = 0, ∀ m ∈ (1, ...,M) and ∀ l ∈

(1, ..., L). This leads to a two-level (Stackelberg) game, where
the provider first decides the prices per access class, as a
function of the already allocated capacity per access tech-
nology, and then the UEs distribute their traffic classes over
RAT classes, selecting the most appropriate for each traffic
class. The provider can play by anticipating the distribution
of the UEs traffic classes over the provided service classes.
The distribution of traffic classes over the provided access
technologies will be a Wardrop equilibrium [15], at which
no UE will have an interest in changing its traffic classes
allocation to available access classes. When equilibrium of
distribution of traffic classes over available access classes is
reached, a given traffic class l of UEi of sensitivity θli will
prefer class m over k if

V − pm − θlifm(Qm, C̄m) ≥ V − pk − θlifk(Qk, C̄k) (5)

Therefore, if pm− pk ≤ θli
(
fk(Qk, C̄k)− fm(Qm, C̄m)

)
and

for monotonic congestion perception functions fm(Qm, C̄m),
class m will be preferred over k if

θli ≥ (pm − pk)/(fm(Qm, C̄m)− fk(Qk, C̄k)),when k > m

and if

θli ≤ (pm − pk)/(fm(Qm, C̄m)− fk(Qk, C̄k)),when k < m

(6)
This creates thresholds of θ values, θ1 > θ2 > ... > θM >
θM+1 = 0, such that at equilibrium, for 1 ≤ m ≤M , ∀ θli ∈

State 0

State 1
multi RAT

State 2p00

p11

p22p01 p12

p02
p20

p21p10

Fig. 1: Mobility States of the UEs.
(θm+1, θm), class m is chosen, while no class is preferred for
θli > θ1. The thresholds θ1, ..., θM+1 are defined by using the
fact that, at any of these specific threshold, a UE is indifferent
between choosing one of the two adjacent access classes for
a specific traffic class. A traffic class, at threshold θ1, is also
indifferent between using the provided service or not.

We let the congestion perception functions fm(Qm, C̄m),
∀ m ∈ (1, ...,M) to be:

fm(Qm, C̄m) =
Qm

C̄m/Cm
(7)

We introduce a dynamic pricing scheme for each access
class m. The maximum price for each class pmax

m , is set for
accessing class m when its total capacity Cm is allocated, and
the minimum price pmin

m is set when the total capacity of class
m is available. The price as a function of available capacity
C̄m is expressed in (8).

pm = max

(
pmin
m , pmax

m

(
1− C̄m

Cm

))
(8)

Regarding the mobility model of the UEs, we consider that
they follow routes of diverse connectivity conditions to the
available radio access technologies, inspired by the model
proposed in [16]. In Fig. 1, we present the states of the Markov
model for the mobility of a UE. A UE in State 0 will pass
through the multi-RAT area (State 1) that we focus on with
probability p01, will stay in State 1 with probability p11 and
will leave the multi-RAT area with probability p12. A UE
starting from State 0 may not pass through the multi-RAT
environment with probability p02 and stays at State 0 with
probability p00. We consider the return probabilities from State
2 to State 1 and to State 0, equal to p21 and p10 respectively.

In the following sections, we provide an approach to evalu-
ate the distributed solution we provide with MATCH. Based on
the system model, we port it to run in a distributed manner on
all the network, i.e. the UEs and the Core Network. Using the
outcomes of the utility functions running on each network UE,
a Core Network controller is able to suggest the technologies
and list the prices for using them.

IV. SYSTEM ARCHITECTURE AND ALGORITHM DESIGN

For the evaluation of the proposed scheme, we use four
RATs, each one with different characteristics (3G, WiFi, 4G
and mmWave), and four different traffic classes available at
each network UE. Each Traffic Class (TC) is categorized by
its data rate demands, ranging from Traffic Class 0 (TC0)
designating applications that require Best Effort connectivity
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Fig. 2: Testbed topology used for the experiments

(e.g. email) to Traffic Class 3 (TC3) designating time criti-
cal/bandwidth intensive applications (e.g. UHD video stream).

We provide experimental results based on the evaluation
of the proposed scheme over the NITOS Future Internet (FI)
facility [17]. NITOS is a heterogeneous testbed, located in the
premises of University of Thessaly, in Volos, Greece. The rich
heterogeneity of its provided resources allows us to conduct
the designated experiments. We employ an LTE base station,
along with a UMTS femto-cell and the respective Core Net-
work. We use a testbed node as a WiFi Access Point, located
inside the coverage of both LTE and UMTS. NITOS has been
upgraded recently with six mmWave WiGig radio units [18],
that are reachable by all the testbed nodes. In order to include
WiGig in the Multi-RAT technologies, we use a pair of WiGig
nodes, that are reachable and interchangeably usable by the
Algorithm 1 Algorithm for UEs

1: if UE is connected to multiRAT then
2: Receive system report (pm, C̄m, Qm) ∀ RAT
3: Calculate the Utility for each TC per RAT
4: UE sends change/OK message to Core Network
5: else
6: if UE decides to connect to multiRAT then
7: Send connect message to Core Network
8: end if
9: end if

10: while 1 do
11: if UE decides to leave State 1 then
12: Send leave message to Core Network
13: else
14: Wait for system report
15: Calculate Utility Function for each TC per RAT
16: UE sends change/OK message to Core Network
17: end if
18: end while

Algorithm 2 Algorithm for Core Network
1: Assign randomly the UEs’ TCs to 4 RATs
2: Calculate prices, available capacities and mass of TCs
3: Create system report (pm, C̄m, Qm) ∀ RAT
4: Create an order of UEs based on (Data Rate De-

mand/Spectrum Efficiency/Sensitivity)
5: for UEs in system do
6: Send system report to UE
7: Wait for UE response
8: Update system report
9: end for

10: while 1 do
11: Wait update from UEs in State 1
12: Wait for new UEs
13: if Available capacity then
14: Assign new UE’s TCs to RATs
15: else
16: Deny access to new UE
17: end if
18: Calculate prices, available capacities and mass of TCs
19: Create system report (pm, C̄m, Qm) ∀ RAT
20: Create an order of UEs based on
21: (Data Rate Demand/Spectrum Efficiency/Sensitivity)
22: for UEs in system do
23: Send system report to UE
24: Wait for response
25: Update system report
26: end for
27: end while

UEs involved in the experiment. The overall topology that we
use for our experiments is depicted in Fig. 2. In order to port
the system model setup over the testbed equipment, we came
up with two algorithms for the UEs and the Core Network.

Algorithm 1 is running on the distributed UEs of the
system. When a UE enters the multi-RAT environment, it
receives a system report message containing the available
capacity, the current price, and the load of connected users
for every RAT in the system. Following, the UE calculates
its utility for its Traffic Classes, based on all the available
RATs. Subsequently, the Core Network controller is informed
on the UE’s decisions on which RAT it decides to allocate its
Traffic Classes (TCs). During the time that the UE spends
in the multi-RAT system, it is waiting to receive a new
system report issued by the Core Network periodically. In
such a case, and as long as the UE stays in State 1, it
recalculates the utilities and selects the RAT for each TC.

The design of the algorithm running at the Core Network is
presented in Algorithm 2. The Core Network controller initial-
izes the multi-RAT system by randomly distributing the State
1 UEs’ TCs to the available RATs. Thereafter, it calculates the
available capacity, price, and the mass of TCs per RAT. Based
on the applied ordering of users, the controller starts sending
a system report to each UE sequentially and waits for their
response. Based on their response, it determines if the changes
of their TCs are applicable or not and proceeds accordingly.



 0

 10

 20

 30

 40

 50

1st Policy 2nd Policy 3rd Policy

N
u

m
b

e
r 

o
f 

S
w

it
c
h

e
s

Desired Switches vs Executed Switches

Desired Switches Executed Switches

(a) Switches performed per each policy

 0

 0.2

 0.4

 0.6

 0.8

 1

UE0 UE1 UE2 UE3 UE4

N
o

rm
a

liz
e

d
 C

o
s
t

Normalized Cost per UE

1st Policy 2nd Policy 3rd Policy

(b) Normalized cost for the three policies

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

UE0 UE1 UE2 UE3 UE4

N
o

rm
a

liz
e

d
 C

o
s
t 

p
e

r 
M

b
p

s

Normalized Cost per Mbps

1st Policy 2nd Policy 3rd Policy

(c) Normalized cost per Mbps

Fig. 3: Experimental Evaluation of the proposed pricing scheme
In the case that a UE enters State 1, the controller determines
if the UE can be served by the system and approves or
denies access. For every change in the multi-RAT system (UEs
entering/leaving State 1), the controller updates the system
values and communicates them to the State 1 UEs for further
calculation of their utility functions (as shown in Algorithm
1). As seen in Algorithm 2, the Core Network policy for
determining the system report depends on the ordering of the
UEs based on their data rate demands, spectrum efficiency,
and sensitivity. Hence, in the following section we provide
results on three different UE ordering policies.

V. SYSTEM EVALUATION

In this section we provide the experimental evaluation of our
proposed policy. As the testbed is organized in an RF-isolated
setup, we are able to reproduce each experiment. We showcase
our experimental results with a resolution of 10 times per
experiment, with 6 UEs available in the Multi-RAT system.

Based on the insights from our previous work [4], we eval-
uate our proposed scheme for three different polling policies.

1) Policy 1: The controller is ordering the State 1 UEs
based on their data rate demands for all TCs (

∑4
l=1 r

l
i)

in descending order.
2) Policy 2: The ordering is based on the normalized

spectrum efficiency of the UEs (wi).
3) Policy 3: The ordering is based on the UEs’ sensitivity

to the changes of the network conditions (θi).
In order for MATCH to be evaluated in a real world

environment, we determined a setup of clients in the testbed
complying with the needs of our model. The rate adaptation
algorithms were disabled for all the technologies and the
highest Modulation and Coding Scheme was configured for all
of them. We measure the capacity of our links by using frames
of 1500 bytes and we set the maximum achieved speed for the
used technologies to be 42 Mbps for UMTS/HSPA+, 70 Mbps
for LTE 10MHz 2x2 MIMO, 130 Mbps for IEEE802.11n
20MHz 2x2 MIMO and 1 Gbps for WiGig. For the con-
figuration of the TCs of each UE, we assume 4 different
classes with limits in the lowest and highest throughput that
the UEs request from the network. Each UE selects uniformly
the throughput value from this range, configured as follows:
1) Background class (0.3-1Mbps), 2) Interactive class (1.1-
2.5 Mbps), 3) Streaming class (2.6Mbps - 8Mbps) and 4)

Conversational class (8.1-25Mbps). The limits have been set
based on [19].

We configure the probabilities of State 0 with p02 to be
equal to 0.2, representing the probability that UEs on State 0
follow a route outside our system across all our experiments. In
addition, the probability of a UE in State 0 to enter the Multi-
RAT system (p01) is equal to 0.5 and thus the probability
of staying in the same state (p00) is 0.3. For State 1, the
probability a UE exits the system going to State 2 (p12) is
configured to 0.45 and to remain in the same state (p11) to
0.5, meaning that the probability of returning to State 0 (p10)
is 0.05. For State 2, we set the probability of a UE to remain
in this state (p22) equal to 0.9 and the probabilities p20 and
p21 equal to 0.05.

TABLE I: Total Achieved Throughput per UE

UE ID Throughput (Mbps)
UE0 45.08805063
UE1 74.65152835
UE2 110.3614036
UE3 114.2742001
UE4 31.71801161

The scenario of the experiments that we present in this
section is the following: The experiment starts with UE0 and
UE1 in State 1, while UE2, UE3, and UE4 will be entering
the system later. UE5 chose the direct route to State 2 and
remained there. For the experiment under consideration the
aggregate achieved throughput for all traffic classes for each
UE in the system is presented in Table I.

Figure 3 is showcasing our averaged results from run-
ning the aforementioned use case in the testbed. Figure 3a
demonstrates how many times the UEs determined a RAT
change for their TCs during the experiment (Desired Switches)
versus how many times they accomplished to do so (Executed
Switches). As Algorithm 2 recalculates capacities, prices and
mass of TCs per each RAT, it may infer that the Utility
calculated per each UE for the case of a RAT change may
not be valid, and subsequently denies the RAT selection. As it
is shown, when the criterion for the ordering is the normalized
spectrum efficiency (2nd Policy), the UEs have more freedom
to change RATs compared to 1st and 3rd case. In the case of
applying the 3rd Policy, we note that the UE ordering at the
Core Network renders any RAT selections rather difficult.

Following, we examine how the different policies affect the
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Fig. 4: Data Rate Distribution of each client across the System’s RATs
charges of the multi-RAT system. In order to compare the
three policies, we normalize the costs as shown in Figure 3b.
As indicated, the UE with the highest data rate demands will
pay more compared to the other clients in the system, at least
for the two of the three cases. When applying the 3rd Policy,
we observe that the UEs with the highest demands (UE2 and
UE3) will pay less than the next UE in order (UE1). Due to
this observation, we present in Fig. 3c the normalized cost per
Mbps for each UE for each policy. Fig. 3c confirms that the
3rd Policy is not fair in terms of cost for utilizing the multi-
RAT. UE4 with the lowest data rate demand will be charged
the highest amount per Mbps.

Finally, we seek to investigate the impact of the ordering
policy in the utilization of the available RATs of the system.
For this purpose, we visualize, in terms of percentages, each
UE’s usage of each RAT for each one of the three policies as
shown in Figure 4. We monitor that some UEs are affected
more than others in the allocation of their TCs to the available
RATs, based on the order that they will be probed to determine
changes (or not) by the network controller. For instance UE0
and UE3 are following the same pattern through the different
ordering policies, with almost the same distribution for the
1st and 3rd policy (Fig. 4a, 4c) and greatly differ for the 2nd
(Fig. 4b). On the other hand, UE1 and UE2 are keeping similar
distribution behavior across the three policies.

VI. CONCLUSION

In this work we propose MATCH, a dynamic pricing scheme
for network selection in a Multi-RAT environment where UEs
have multiple traffic classes and are able of concurrently using
multiple access technologies. For the evaluation of our scheme,
we presented experimental results obtained from the appli-
cation of our proposed model in a real testbed environment.
Through these experiments, we pinpoint the importance of the
UEs’ ordering policies (based on data rate demands, spectrum
efficiency, and sensitivity) and how they may affect the cost
incurred at each UE as well as the utilization of the available
RATs. In the near future, we foresee extending our work
towards locating the Core Network controller closer to the
edge, and incorporating edge services that will support lower
latency creating room for new charging policies for the clients.
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