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Abstract—The areas of Software-Defined Networking (SDN)
and Information-Centric Networking (ICN) have gained increas-
ing attention in the wider research community, while gaining
credibility through corporate interest and investment. With the
promise of SDN to simplify the deployment of alternative network
architectures, the question arises how SDN and ICN could
concretely be combined, deployed and tested. In this paper, we
address this very question within a particular architectural con-
text for ICN. We outline a possible realization in a novel design
for ICN solutions and point to possible testbed deployments for
future testing.

I. INTRODUCTION

Software-Defined Networking has been touted as an ap-
proach to bring high programmability to network components
by disintegrating the forwarding function of a network into
an efficient fast path and a programmable slow path. It is
the extensibility introduced through the latter, which is seen
as enabling the development of new routing and forwarding
approaches without the need to replace hardware components
in the core network. This allows for virtualizing entire net-
works on a per-flow basis, a significant improvement over
existing solutions. Beyond the research community, SDN has
received significant endorsement through companies such as
Google, building out dedicated SDN-based infrastructure for
supporting their user-facing Internet services, while several
manufacturers are working on making future components
SDN-compliant.

Information-Centric Networking has been gaining attention
among those who would like to replace the current IP-based
internetworking layer with a new solution. Based on the
observation that the WHAT in a communication is often the
primary objective rather than connecting to a specific WHO,
this leads to declaring information as the main principle in
all of the major approaches to ICN, such as [1]-[3]. Another
crucial aspect of ICN approaches is the separation of functions
that control the matching of information demand and supply
from the functions that deal with the forwarding resources
within a network.

This separation of functions seems to be aligned with the
separation of network configuration control and forwarding

in SDN. Hence, it begs the question as to the opportunities
that combining SDN and ICN could potentially bring about.
Beyond the potential technical aspect of such combination,
there is another possible advantage of combining SDN and
ICN technologies. The authors in [4] point out that ICN
deployments are more likely to be driven by powerful players
and industries such as the content industry, the financial
services industry or the healthcare industry, rather than relying
on an adoption of ICN through key core Internet players.
We see this edge-driven deployment somewhat aligned with
the recent drive to adopt SDN solutions for building out,
e.g., Google’s infrastructure. Hence, we assert that combining
ICN solutions with SDN deployments could drive the possible
adoption of ICN approaches, raising the combination of SDN
and ICN from a purely technical question to an interesting
business strategic one.

In this paper, we take such interest in combining ICN
and SDN for granted and focus on a possible integration of
both solutions at a technical level. For this, we structure the
remainder of the paper as follows. We first outline in Section
II the architectural context that we assume for ICN. We then
present a node design that realizes our architectural context in
Section III, forming the basis for integration our SDN solution.
Section IV addresses the core question of what a (SDN) flow
in our architectural context would be, leading to realizing our
ICN architectural functions based on that flow notion. Finally,
in Section V, we outline a possible testbed deployment for our
combined solution before concluding the paper.

II. ARCHITECTURAL CONTEXT

The architectural context with which we tie a Software-
Defined Network approach is the one presented in [1].

Information labeling in contrast to end-point addressing.
The major shift in the way communications take place is
the fact that end-points are not explicitly addressed. Instead,
information is identified using statistically unique fixed sized
labels. These labels carry no semantics and are meaningless
to most network components and applications.



Information aggregation through scoping. Information
must always reside within a context, called scope. Hence, a
scope represents a set of information and is therefore an infor-
mation item itself, being identified as such with an individual
label. Being information items, scopes can be nested under
other scope(s), allowing for building complex directed acyclic
graphs of information. Scoping is crucial when scaling infor-
mation management to real information structures. Moreover,
as we discuss in our fifth principle, scoping provides a way to
functionally differentiate the way information is disseminated
to the network by assigning different dissemination strategies
to sub-graphs of information.

Decoupling of communicating parties. The primitive ser-
vice model that is exported to all applications is a pub-
lish/subscribe one. Hence, communicating entities do not know
the location (based on identifiers or end-point addresses)
of each other. Instead, each node is (self) assigned with a
statistically unique node label that is only used by the core
network functions to resolve requests for information.

Separation of network functions. Core network functions
are cleanly separated, as discussed in [5]. Each node supports
three network functions that realize the dissemination of
information within a given scope of the information structure.
The first one, rendezvous, matches demand for and supply of
information. This process results in some form of (location)
information that is being used for binding the provisioning of
information to a network location. This information is used
by the second function, topology management and formation,
to determine a suitable delivery relationship for the transfer
of the information, this transfer being executed by the third
function, forwarding.

Flexible information dissemination based on information
scoping and well-defined strategies. The fifth principle ad-
dresses the methods used for implementing the aforementioned
functions as well as issues regarding information space gov-
ernance and management. For this, dissemination strategies,
which are associated to (parts of) the information structure,
capture the implementation details. Together with scoping,
they establish a functional scoping through which the core
functions can be optimized based on requirements of commu-
nicating entities that access specific parts of the information
graph. For simplicity, we assume a domain-local dissemination
strategy in this paper, i.e., information is disseminated across
a single domain. Domain-wide rendezvous can be realized
in dedicated network nodes that may share or replicate the
information structure and the interested nodes (publishers and
subscribers). Topology management is realized in dedicated
nodes that know the network topology and are notified when
nodes attach to or detach from a forwarding node. Depending
on the domain size, one or more cooperating topology man-
agers may be required. Finally, forwarding is realized using
LIPSIN [6] identifiers, which natively support source-based
multicasting in small to medium scale networks.

Fig. 1. Node Design.

III. NODE DESIGN

In this section we briefly describe the design of a network
node in our ICN architecture, which is currently implemented
as a Click [7] router. Our prototype is publicly available
in [8]. Figure 1 presents the components that comprise the
ICN network node (called Blackadder in the remainder of the
paper).

The Rendezvous component implements the respective net-
work function. All publish/subscribe requests finally reach this
element (in a network node), which manages the information
graph, matches publishers with subscribers and triggers the
formation of a forwarding path by publishing a request to a
Topology Manager.

The Topology Manager component manages the network
topology and upon request by a Rendezvous component, it
creates forwarding paths, expressed as LIPSIN identifiers,
from one or more publishers to one or more subscribers, for a
specific information identifier. These paths are, then, published
as information to the respective publishers that utilize them
when publishing information for a specific information iden-
tifier. During the bootstrapping process, a network attachment
protocol is used to assign a new node with Link identifiers
which are published to a TM component which updates the
network graph and configures the forwarding information on
the new node.

The Forwarding component implements one of the three
network functions described in the previous section. In our
current prototype, it utilizes LIPSIN identifiers [6] to forward
publications to other nodes or its network stack.

The Core component implements the publish/subscribe ser-
vice model described in the previous section. It receives
all publish/subscribe requests sent by applications and other
node components and, according to the dissemination strategy,
forwards them to the local rendezvous component (e.g. in a
node-local strategy) or publishes them to the network (e.g. in a
domain-wide strategy). Moreover, it receives publications from
the network and dispatches them to subscribed applications.
Finally, it receives publish/subscribe notifications from the
network or from the local rendezvous component and notifies
all interested applications. For instance, when subscribers for
an information item, which was previously advertised by a
local application, express their interest in a rendezvous node,



it will receive and forward to the application a request to start
publishing data for that item.

Note that, as shown in Figure 1, the Topology Manager and
Rendezvous components utilize the same publish/subscribe
service model that is exported to all applications. Therefore,
their implementation can be realized within the network node
or as separate applications. Currently, we implement the
Topology Manager component as a separate C++ application
while the Rendezvous component is integrated in the Click
configuration. For a given domain, the Topology Manager
and Rendezvous components subscribe to a globally agreed
information scope where they receive requests in the form of
publications from all the domain nodes. In addition, the Topol-
ogy Manager is pre-configured with the forwarding identifier
to the Rendezvous node and vice versa, while the former pre-
calculates the LIPSIN forwarding identifier from any node to
the Rendezvous node and delivers it during network attach-
ment. As a result, when attachment is complete a node has the
necessary information to contact Rendezvous for subscription
and publication requests. When the Rendezvous needs to send
a notification to a publisher or a subscriber it sends it via
a proper publication to the Topology Manager which in turn
sends it to the recipient node. This is because the Topology
manager has all the necessary information to calculate the
forwarding identifiers from publishers to subscribers (in case
it is a notification to start publish) as well as the required
forwarding identifier to deliver the notification to the recipient.
More details about the interaction of the internals can be found
in [17].

IV. ICN IN A SOFTWARE-DEFINED NETWORK

While software-defined networking (SDN) has been re-
ported [10],[11] as a powerful tool for supporting content
distribution, there has been some preliminary research work
on how an OpenFlow deployment can fully support an
information-centric approach. In the following, we will address
two key issues when attempting to realize an ICN architecture
that uses a software-defined network. The first is that of
mapping the notion of a flow into an ICN, while the second
is concerned with realizing the core ICN functions of our
architectural context with SDN concepts.

A. What is a Flow in the proposed ICN design?

SDN is in large part about understanding and managing a
network as a unified abstraction via a centralized software-
driven control plane. Scalability issues have already been
addressed using a hierarchical design of SDN controllers [12],
[13]. A controller manages the data plane of one or more
network switches by changing the flow table entries on each
device. This is achieved via the OpenFlow protocol [14], which
defines the types of flow modification operations as well as the
communication messages between switches and the controller.

From an Information-centric perspective publishers get as-
sociated with subscribers and push information. The volume
of data under an information identifier is segmented to the
underlying media maximum transmission size units (MTUs)

and, based on the currently active subscriptions, these in-
formation packets are delivered to one or more subscribers.
From a switch perspective, each switch datapath needs to
match a forwarding identifier that is prepended on each
information packet with a list of forwarding actions to the
required egress ports where subscribers reside 1. Note that the
forwarding identifiers provide only forwarding information to
reach subscribers from publishers and are not associated with
information identifiers in any way.

In case a different piece of information from the same
publisher requires the same delivery graph to subscribers,
the same forwarding identifier is used, without requiring any
additional OpenFlow entries. This is the main reason for using
a forwarding-specific identifier, which represents actual routes
to destinations, rather than the content names themselves, as
it happens in the design proposed in [15]. For example, one
physical machine will be usually subscribed to and/or publish
a few thousands of information items simultaneously, many
of which might be exchanged with the same machines or
caches over the network. If we programmed the SDN datapaths
using content names, we would have many entries with the
same forwarding action list that would route content between
involved machines that would quickly exceed the datapath
forwarding rule table capacity. Since the forwarding identifiers
in our case are built to be unique for each forwarding action
list, we just have one unique entry per forwarding action
list that can be reused for delivery of different content that
gets exchanged between the same machines. Finally in our
design, when information packets need to cross several switch
datapaths to reach all subscribers, the proper uplinks on
each switch are also considered as subscribers and the same
forwarding identifier is associated with a different list of
forwarding actions in the context of each switch datapath that
is involved in the transfer.

In the described context of Section II, a flow is identified
by a forwarding identifier that requires a different list of
forwarding actions inside each switch datapath. Therefore, the
scope of a flow is the switch datapath. The ICN topology
manager, as we have described in Section II, has all the
necessary information to build a statistically unique forwarding
identifier that encodes the information delivery graph in each
case. Each openflow controller that governs one or a set of
switch datapaths, will get the necessary information during
bootstrap so it can decode the forwarding identifier and assign
the required local egress ports to the list of forwarding actions
for each datapath.

B. Realizing the Core ICN Functions

In the following, we explore how the core network functions
defined in our fourth design principle, can be realized within
an OpenFlow deployment in an efficient and scalable way.
One of the important aspects that facilitate such integration is
the clean separation of functions within the described ICN

1As outlined in Section II, the current domain-local dissemination strategy
implements a forwarding identifier as a Bloom filter encoded graph of all
links from the publisher to the subscriber.



architecture. Such separation, along with the realization of
each function in specific dissemination strategies, provides
a large design space that allows for deployment-specific
optimizations. Based on the SDN basic concepts and the
OpenFlow protocol, information dissemination can be done
using an SDN-specific strategy.

As we have previously discussed, the topology and forma-
tion network function has all the domain node deployment
overview in a form of a graph. Having this information
centrally available allows for graph adjustment operations to
avoid loops in multi datapath interconnections. In the SDN
deployment the graph will be primarily defined by the avail-
able switch datapaths and the way they are interconnected. For
each switch datapath, just a map of ports, attached nodes and
local link identifiers is needed. Each network node along with
the respective port and uplink(s) on each switch datapath will
be assigned a fixed length, statistically unique link identifier.
Using the LIPSIN [6] bloom filter-based encoding scheme,
the topology manager can build forwarding identifiers for
an information delivery graph by encoding the respective
link identifiers of the subscriber egress ports. Switch uplink
identifiers will be included when more than one datapath is
involved in the transfer. The constructed forwarding identifier
will be sent via a publication back to the publisher. For
that publication the topology manager will also construct a
forwarding identifier. The network nodes are notified during
bootstrap of the forwarding identifiers to the topology manager
and the rendezvous node. Note that topology management
utilizes the same publish/subscribe service just like any other
application in the network. It also needs to be a virtually
centralized entity within a domain and it can run on any node
on the network, even collocated with one or more openflow
controllers. Special care must be taken when calculating
LIPSIN identifiers so that false positives are avoided. In [6]
there is a discussion about this issue and how rare it can be
with a proper identifier size.

The ICN core function that is primarily supported by SDN is
the Forwarding which is assisted by the Openflow controllers
that govern the switch datapaths. For each switch datapath
the topology manager publishes to the controller, during
network bootstrap, all the link identifiers that are assigned to
the governed switch datapath(s). A possible implementation
of the bootstrap mechanism will be presented later. After
initialization takes place, when a packet bounces in a datapath,
the respective controller will receive it and check if local
link identifiers are encoded in the packet forwarding identifier.
For all the link identifiers it finds, it adds a subsequent port
forwarding action to the action list and finally installs the
respective flow entry that matches the forwarding identifier.
The process will be repeated for each datapath. The controllers
that control the switch datapaths are independent and can
be distributed to available physical machines to improve
Openflow configuration response performance. After proper
flow installation on all involved datapaths takes place, the
forwarding is carried by the network.

The Rendezvous network function is independent from the

specific changes we made to the other two core functions. We
can therefore re-use the rendezvous function that is currently
already available for domain-local dissemination strategies,
i.e., a centralized rendezvous server that serves the local do-
main. Any optimization for this domain-local function, such as
through a highly replicated distributed solution, is independent
from the specific SDN-based delivery mechanism we proposed
here. Therefore, the rendezvous function can be independently
optimized. The same holds for an extension of the domain-
local rendezvous towards a global rendezvous solution, such
as proposed in [16].

In Figure 2, we present an ICN architectural blueprint for
nodes attached on two different SDN datapaths. A selected
node on datapath 1 runs the domain rendezvous function and
a selected node on datapath 2 run the topology manager func-
tion. Each datapath has a local Openflow controller which uses
the LIPSIN forwarding logic to decode forwarding identifiers
and install flows.

C. Anatomy of An SDN-based ICN Node

A prototype implementation of the SDN-based Blackadder
can be realized on current Openflow-enabled switches that
support the specification version 1.0. The Rendezvous infor-
mation structures and subsequent operations can communicate
via the Blackadder service model with the topology manager
using the forwarding implemented by an Openflow controller.
The topology manager role in this design is to have a de-
ployment overview of the controlled switch datapaths and the
interconnection of their uplinks and downlinks and produce
LIPSIN [6] identifiers. During bootstrap the topology manager
gets from the Openflow controller the port layout of the local
switch and assigns local link identifiers. These identifiers are
communicated to the local controller via bouncing packets.
The Topology manager firstly configures the controller on
the switch that hosts it, the immediate neighbour switches
using local uplink and so on. Some hardcoded information
about the deployment of the switches will have to be provided
at this stage. The Topology manager messages may now be
transferred to neighbor datapaths because the local controller
can install flows and redirect traffic to the uplink of the local
switch. This way all switches in a domain are discovered and a
network graph is constructed by the topology manager. When
a new node gets attached at a port, the local controller notifies
the topology manager to associate the node identifier with the
respective port.

When a pub/sub rendezvous takes place, the topology
manager will be notified and it will produce two forwarding
identifiers for two different delivery graphs, namely one for the
information delivery from publisher to subscribers and one for
the notification delivery from the topology manager to the pub-
lisher. Since the current Openflow specification matches fields
of certain types of protocols instead of an arbitrary number
of bytes, the 14-byte ethernet header can be used for hosting
the forwarding identifier. The flows will be therefore identified
if we regard Ethernet header fields as parts of the forwarding
identifier and match the respective offsets accordingly. For this



Fig. 2. An ICN network architectural blueprint that uses SDN in forwarding.

approach to work, all the Ethernet interfaces on all the physical
network nodes have to be configured in promiscuous mode and
capture all arriving traffic. After all, when a packet arrives on
a specific port it is sure that is destined to the attached node
because of the described system operation. Hence, Ethernet
source and destination addresses are no longer relevant.

D. Benefits of the SDN-based node design

The forwarding component that used LIPSIN [6] in the
original Blackadder prototype is removed from the node
architecture and placed in the Openflow controllers, which
control a datapath. The network graph within the topology
manager represents datapath interconnections and uses an
inverted list to associate terminals with each datapath node in
the graph. Moreover LID and port information is distributed
among openflow controllers that govern the switch datapaths.
Without SDN support, each node in the graph represents an
actual terminal and centrally holds all necessary interface
information for the forwarding (i.e ethernet addresses). In
figure 4 the described differences are depicted. It is evident that
scalability is significantly improved. Since the switch datapath
in Openflow sends packets that don’t match the current flow
configuration directly to the controller, some processes are
further simplified.

More specifically, during bootstrap when the link identi-
fiers have not yet been disseminated, the topology manager
communicates with local Openflow controller on each switch
via the bouncing packet mechanism. As a result the network
attachment protocol requirements are very simple compared to
the ones of the original Blackadder. The topology manager just
needs to know the switch where network nodes are attached
and it does not have to ask the nodes for that info. The local
openflow controller is the only one that needs to know the
actual ports, which are traced via a bouncing discovery packet
during node attachment. Subsequently the topology manager
gets notified of the event via a proper publication as it happens
with standard Blackadder. On the other side of the attachment
process, the nodes just need to receive from the local Openflow
controller the topology forwarding identifiers to the topology
manager and the rendezvous nodes without any other link
specific information. These are all significant improvements
of the system and operations that are described in [17].

Finally, since flows are characterized solely by a forwarding

Fig. 3. Differences between packet headers.

identifier, no additional headers are required for link specific
protocols and therefore the original Blackadder packet headers
get reduced. The header difference between original Blackad-
der, which used Ethernet for forwarding, and the SDN-based
Blackadder version is depicted in figure 3.

E. Drawbacks of the SDN-based node design

Nevertheless, there are some drawbacks in the proposed
SDN design, which are directly related to implementation
limits. Overall scalability of the design may be hindered by the
Openflow channel capacity and the Openflow controller ability
to respond to incoming forwarding requests. If the controller
cannot deal with the requests fast enough, the response of the
network will be slow and its performance will decrease as it
scales. However, these limitations are addressable to a certain
extend and already dealt with in other SDN systems [12]-
[13]. We intend to further investigate the Openflow controller
performance as soon as we implement the proposed system.

V. POSSIBLE TESTBED DEPLOYMENT

Currently, the NITOS [18] Testbed is being used for the
development and preliminary testing of the described SDN-
based ICN architecture. This testbed has 40 physical high-end
nodes wired via ethernet on Pronto 3290 switches that run the
latest Openflow Indigo distribution. NITOS is primarily a wire-
less testbed and the available nodes feature several wireless
interfaces, which prevents them from being virtualized. Still
2 openflow switches and 40 nodes are not enough to assess
the scalability of the proposed system. For that reason, we
plan to use the Ofelia [9] openflow testbed which has enough



Fig. 4. Topology Manager Graph Representation with and without SDN support.

switching resources and virtualized terminals to represent a
domain.

VI. CONCLUSIONS

In this work, we proposed an ICN architectural blueprint
that uses SDN support to implement the crucial forwarding
function within an architectural context that is currently en-
tirely implemented in software. Crucial here is the notion of a
flow, which we aligned with the architectural ICN context by
anchoring the notion of forwarding identifiers to this central
concept. Based on this, we proposed the replacement of the
current forwarding function within our ICN prototype with
one that directly utilizes the SDN capabilities to implement
forwarding functions based on incoming unknown flow labels.
While our work is an early step in the direction of combining
SDN and ICN in an efficient way, we are confident that early
realizations of our ideas with soon be tested and demonstrated
in real-life testbed settings. This availability will drive the
debate how SDN can drive the further adoption of ICN
deployments in the near future.
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