• 1
  • 2
  • 3
  • 4

Activities

  • NITOS Outdoor deployment consists of powerful nodes that feature multiple wireless interfaces and allow for experimentation with heterogeneous (Wi-Fi, WiMAX,

    Read More
  • The setup NITOS testbed is currently using is a fixed setup (employing no mobility between BSs) that does not require

    Read More
  • Towards the development of a remote accessible LTE testbed, where experimenters from all the word will be able to run

    Read More
  • NITOS facility provides remote access to OpenFlow switches (2 x Pronto 3290 , 2 x HP 3800 ), enabling the user to create

    Read More
  • NITlab developed a software defined radio (SDR) testbed that consists of 18 Universal Software Radio Peripheral (USRP) devices attached to

    Read More
  • NITOS is an Intelligent Transport System (ITS) compatible facility thanks to the implementation of the key components of the ITS

    Read More
  • NITOS cloud infrastructure is based on HP GEN8 blade servers and one HP DL380p GEN8 server. Cloud Infrastructure UTH Each blade server has

    Read More

NITOS

The Future Internet Facility

  • Outdoor Testbed

    Experiments under real world environment Read More
  • Indoor Testbed

    Experiments in RF isolated environment Read More
  • Office testbed

    Experiments in an office environment Read More
  • 1
  • 2
  • 3

Mobile Application

UTH developed an application, which is used to monitor all the wireless devices (wifi, 3G BS, 3G femtocell, WiMAX and LTE in the near future) and measure the channel state of each interface (RSSI levels), data traffic (uplink, downlink), handover conditions (e.g. when and under which conditions there is a handover from the 3G BS to the 3G femtocell), etc. This information will be gathered by the interaction of the application directly with the wireless interfaces drivers.

The additional property that UTH mobile tool has to offer is that the application can send those info/ measurements to an OML database located at NITOS server. The architecture that is used as a model for the deployment can be found in Measurement Architecture for Network Experiments with Disconnected Mobile Nodes, NICTA Australian Technology Park.

So far, UTH has managed to create a service that:

  • Samples data from the mobile interface (signal strength, SNR, network type, operator name).
  • Samples data from the WiFi interface (signal strength, bssid, ssid, capabilities, channel).
  • Stores the data in separate schemas in a local database.
  • Creates a connection to a remote web OML server and uses OML text protocol to push the data in.
  • Depicts the sampling measurements on a Google map.
  • Creates a graph from the sampling measurements. 

Below, instances of the applications GUI and applications functionality are presented. We provide the reader with snapshots of the application and measurements taken at our lab. Moreover, a brief description of the applications elements is provided.

 

What Our Experimenters Say

  • NITOS is a very reliable and well managed platform. The offered infrastructure and features are great. The management team is very supportive.

    Mustafa Al-Bado
    Postdoctoral researcher
    Insight centre, University College Cork (UCC)
  • 1
  • 2
 
uth
image
image
image
 
 

Login Form